• Matéria: Matemática
  • Autor: Kæzar
  • Perguntado 5 anos atrás

Uma pessoa deitada no chão vê o topo de um poste sob um ângulo de 60 graus. Se
esta pessoa estivesse deitada 15 metros mais distante da base do poste, ela veria o topo sob um ângulo de 45 graus. Determine a altura do poste. Considere raiz quadrada de 3 como sendo 1,7.

Respostas

respondido por: LiannN
1

Resposta:

36,42 metros!

Explicação passo-a-passo:

Questão de trigonometria.

=> Observe que há duas situações:

1) Ele está a x metros da base do poste e o seu ângulo é 60°.

2) Ele está a (x+15) metros da base do poste e seu ângulo é de 45°.

Vamos usar a relação tangente nas duas ocasiões:

Tg60° = Oposto (altura do poste "h") / Adjacente (distância da base do poste)

Tg60° = h/x

\sqrt{3} = h/x ou h = \sqrt{3}*x -------- lembrando que \sqrt{3} = 1,7

Na outra situação;

Tg45° = h/(x+15)

1 = h/x+15

h = x+15 ou x = h - 15

Juntando tudo;

h = 1,7*(h-15)

h = 1,7h - 25,5

1,7h - h = 25,5

0,7 h = 25,5

h = 25,5/0,7

h = 36,42 metros

Perguntas similares