• Matéria: Matemática
  • Autor: hemily519
  • Perguntado 5 anos atrás

Integral de
 {tg}^{2} ( \frac{1}{3} x)  {sec}^{2} ( \frac{1}{3} x)
Resposta:
 {tg}^{3} ( \frac{1}{3} x) + c

Respostas

respondido por: jacksonseemannp8cx7w
0

Explicação passo-a-passo:

Olha na tabela, a integral de Sec^2(1/3 x) = Tan (1/3 x)

Por isso a resposta ficou elevada ao cubo

Tan^2 (1/3 x) Tan (1/3 x)

Tan^3 (1/3 x)

respondido por: Anônimo
1

Olá,

Temos a integral:

 \tt \int {tg}^{2} ( \frac{1}{3} x) \:  {sec}^{2} ( \frac{1}{3} x)dx \\

Vamos resolver por substituição:

 \tt \: u = tg( \frac{1}{3} x) \:  \to \: du =  {sec}^{2} ( \frac{1}{3} x). \: ( \frac{1}{3} ) \: dx \\  \tt \: dx =  \frac{3 \: du}{ {sec}^{2}( \frac{1}{3}  x)}  \\

Substituindo na integral:

 \tt \int {tg}^{2} ( \frac{1}{3} x) \:  {sec}^{2} ( \frac{1}{3} x)dx  =  \int  {u}^{2}  {sec}^{2} ( \frac{1}{3} x) \frac{3 \: du}{ {sec}^{2} ( \frac{1}{3} x)}  \\  \tt \int {tg}^{2} ( \frac{1}{3} x) \:  {sec}^{2} ( \frac{1}{3} x)dx  = 3 \int {u}^{2}  \cancel{ {sen}^{2}( \frac{1}{3} x) } \frac{du}{ \cancel{ {sec}^{2}( \frac{1}{3}  x)}}  \\  \tt \int {tg}^{2} ( \frac{1}{3} x) \:  {sec}^{2} ( \frac{1}{3} x)dx  = 3 \int {u}^{2} du \\  \tt \int {tg}^{2} ( \frac{1}{3} x) \:  {sec}^{2} ( \frac{1}{3} x)dx  = 3 \frac{ {u}^{2 + 1} }{2 + 1}  + c \\  \tt \int {tg}^{2} ( \frac{1}{3} x) \:  {sec}^{2} ( \frac{1}{3} x)dx  = 3 \frac{ {u}^{3} }{3}  + c \\  \tt \int {tg}^{2} ( \frac{1}{3} x) \:  {sec}^{2} ( \frac{1}{3} x)dx  =  \cancel{3} \frac{ {u}^{3} }{ \cancel{3}}  + c \\  \tt \int {tg}^{2} ( \frac{1}{3} x) \:  {sec}^{2} ( \frac{1}{3} x)dx  =  {u}^{3}  + c \\

Substituindo  \tt \: u =  {tg}( \frac{1}{3} x) \\

Temos:

 \boxed{ \tt \int {tg}^{2} ( \frac{1}{3} x) \:  {sec}^{2} ( \frac{1}{3} x)dx  =  {tg}^{3} ( \frac{1}{3} x) + c} \\

Perguntas similares