• Matéria: Matemática
  • Autor: marleneventura48
  • Perguntado 5 anos atrás

Alguém ajudaaaa, melhor explicação ​

Anexos:

Respostas

respondido por: Worgin
2

Propriedades básicas de logaritmos:

    \log_a(b.c)=\log_ab+\log_ac

    \log_a\frac{b}{c}=\log_ab-\log_ac

    \log_ab^c=c.\log-ab

    a^{\log_ab}=b

\log(\frac{a\sqrt{b}}{c^3})\\\\\log(\frac{a.b^\frac{1}{2}}{c^3})\\\\\log(a.b^\frac{1}{2})-\log c^3\\\\

\log a+\log b^\frac{1}{2}-\log c^3\\\\\log a+\frac{1}{2}\log b-3.\log c

-------------------------------------------------------

\log_a(m^3n^2)\\\\\log_am^3+\log_an^2\\\\3.\log_am+2.\log_an\\\\3.11+2.6\\\\45

-------------------------------------------------------

\log 72\\\\\log 2^3.3^2\\\\\log2^3+\log3^2\\\\3.\log2+2\log3\\\\3a+2b

-------------------------------------------------------

\log_aA=2.\log_ac-\frac{1}{3}\log_ad\\\\\log_aA=\log_a{\frac{c^2}{d^\frac{1}{3}}}\\\\a^{\log_aA}=a^{\log_a{\frac{c^2}{d^\frac{1}{3}}}}\\\\A=\frac{c^2}{\sqrt[3]{d}}


marleneventura48: Obrigadaaa
Perguntas similares