1) Em uma determinada cidade, a tarifa cobrada pelos taxistas corresponde a uma
parcela fixa chamada de bandeirada e uma parcela referente aos quilômetros rodados.
Sabendo que uma pessoa pretende fazer uma viagem de 7 km em que o preço da
bandeirada é igual a R$ 4,50 e o custo por quilômetro rodado é igual a R$ 2,75,
determine:
a) uma fórmula que expresse o valor da tarifa cobrada em função dos quilômetros
rodados para essa cidade.
b) quanto irá pagar a pessoa referida no enunciado.
2) Dada a função definida por:
F(x)= 2x + 1
Calcular:
a) f(0)=
b) f(7)=
c) f(-2)=
d) f(-5)=
3) Faça um esboço do gráfico da função:
A) f (x)= 2x - 84) Dada a função F(x) = ax + b e sabendo-se que F(3) = 5 e F(-2) = -5 calcule F(4)
5) Classifique cada uma das funções seguintes em crescente ou decrescente:
a) y = 4x + 6
b) f(x) = – x + 10
c) f(x)= -2x – 2
d) f(x)= 4x + 3
e) f(x)= -5x - 2
B)f(x)= 3x – 6
Respostas
Resposta:
1. função afim: f(x) = ax + b
b é a parcela fixa, enquanto ax é a parcela que vai modificando conforme o valor de x, que nesse caso são os km rodados.
a) f(x) = 2,75x + 4,50
b) f(7) = 2,75 • 7 + 4,5 = 23,75
2.
a) f(0) = 2 • 0 + 1 = 1
b) f(7) = 2 • 7 + 1 = 15
c) f(-2) = 2 • (-2) + 1 = -4 + 1 = -3
d) f(-5) = 2 • (-5) + 1 = -10 + 1 = -9
3. Quando dão uma função e pedem para construir um gráfico, é só assumir valores aleatórios para x e encontrar o f(x) = y. Assim, marca esses valores de x e do y (que foi encontrado), encontra os pontos e depois passa a reta sobre eles, esse é o gráfico.
4. F(x) = ax + b sabendo que F(3) = 5 e F(-2) = -5, calcule F(4)
Sabemos os valores de y para cada x dado, mas não sabemos os valores de a e b. Temos que recorrer aos sistemas para descobrir as duas variáveis.
3a + b = 5
-2a + b = -5, pelo método da adição
3a + b = 5
2a - b = 5, soma o de cima com o de baixo (método da adição)
5a = 10
a = 10/5 = 2
substituindo 2 em a, para descobrir b:
3 • 2 + b = 5
6 + b = 5
b = 5 - 6 = -1
Agora já sabemos a fórmula F(x), que é F(x) = 2x - 1
Para saber F(4):
F(4) = 2 • 4 - 1
F(4) = 8 - 1
F(4) = 7
5. O que faz uma função afim ser crescente ou decrescente é o sinal do ax. Se f(x) = -ax + b, a função é decrescente, se f(x) = ax + b, a função é crescente.
a) crescente
b) decrescente
c) decrescente
d) crescente
e) decrescente
A) f (x)= 2x - 8
B)f(x)= 3x – 6