01) Determine a soma dos 20 primeiros termos da PG (4,8,16, ..).
Resposta:
02) Qual a soma dos 10 primeiros termos da PG (2. 10,50, ...)?
Resposta:
03) Determine a soma dos 13 primeiros termos da PG (1,3,9, ..).
Resposta:
Respostas
Resposta:Segue as contas abaixo na explicação
Explicação passo-a-passo:
1)a1=4,q=a2/a1--->q=8/4--->q=2,n=20,a20=?,S20=?
an=a1.q^n-1 Sn=an.q-a1/q-1 Sn=a1.[(q^n)-1]/q-1
a20=4.2^20-1 S20=2097152.2-4/4-1 ou S20=4.[(2^20)-1]/4-1
a20=4.2^19 S20=4194304-4/3 S20=4.[1048576-1]/3
a20=4.524288 S20=4194300/3 S20=4.1048575/3
a20=2097152 S20=1398100 S20=4.349525
S20=1398100
2)a1=2,q=a2/a1--->q=10/2--->q=5,n=10,a10=?,S10=?
an=a1.q^n-1 Sn=an.q-a1/q-1 Sn=a1.[(q^n)-1]/q-1
a10=2.5^10-1 S10=3906250.5-2/5-1 S10=2.[(5^10)-1]/5-1
a10=2.5^9 S10=19531250-2/4 ou S10=2.[9765625-1]/4
a10=2.1953125 S10=19531248/4 S10=2.9765624/4
a10=3906250 S10=4882812 S10=2.2441406
S10=4882812
3)a1=1,q=a2/a1--->q=3/1--->q=3,n=13,a13=?,S13=?
an=a1.q^n-1 Sn=an.q-a1/q-1 Sn=a1.[(q^n)-1]/q-1
a13=1.3^13-1 S13=531441.3-1/3-1 ou S13=1.[(3^13)-1]/3-1
a13=1.3^12 S13=1594323-1/2 S13=1.[1594323-1]/2
a13=1.531441 S13=1594322/2 S13=1594322/2
a13=531441 S13=797161 S13=797161