• Matéria: Matemática
  • Autor: vivianefsilva
  • Perguntado 5 anos atrás

Sabe-se que
 lim  \: x   \: a(  \frac{g(x) ^{2} + f(x) }{3}) = 5
... por favor confira o print e me ajude a responder ​

Anexos:

Respostas

respondido por: elizeugatao
0

Vamos usar as propriedades :

\displaystyle  \lim_{\text x \to \text a} [\ \text{g(x)+f(x)}\ ] = \lim_{\text x \to \text a} \text{g(x)} + \lim_{\text x \to \text a} \text{f(x)} \\\\\\ \lim_{\text x \to \text a} [\text{g(x)}]^{\text n} = [\ \lim_{\text x \to \text a} \text{g(x)} \ ] ^{\text n } \\\\\\ \lim_{\text x \to \text a} \ [\  \text k.\text{g(x)}\ ] = \text k.[ \  \lim_{\text x \to \text a} \text{g(x)} \ ]

Temos :

\displaystyle  \lim_{\text x \to \text a} [\ \frac{\text{g(x)}^2+\text{f(x)}}{3} \ ] = 5

Usando a propriedade :

\displaystyle  \frac{1}{3}.[\ \lim_{\text x \to \text a} \ \text{g(x)}^2+ \lim_{\text x \to \text a} \text{f(x)} \ ] =5  

\displaystyle  [\ \lim_{\text x \to \text a} \ \text{g(x)} \ ]^2+ \lim_{\text x \to \text a} \text{f(x)}  =15

A questão nos diz que :

\displaystyle \lim_{\text x \to \text a} [\text{g(x)}]^3  = 27

logo :

\displaystyle [\ \lim_{\text x \to \text a} \text{g(x)}\ ]^3  = 27 \\\\ \lim_{\text x \to \text a} \text{g(x)} = \sqrt[3]{27} \\\\ \lim_{\text x \to \text a} \text{g(x)} = 3

Substituindo :

\displaystyle  [\ \lim_{\text x \to \text a} \ \text{g(x)} \ ]^2+ \lim_{\text x \to \text a} \text{f(x)}  =15

\displaystyle  [\ 3\  ]^2+ \lim_{\text x \to \text a} \text{f(x)}  =15 \\\\ \lim_{\text x \to \text a} \text{f(x)} = 15 - 9  \\\\ \lim_{\text x \to \text a} \text{f(x)} = 6

Portanto, concluímos que :

\huge\boxed{\ \lim_{\text x \to \text a} \text{f(x)}=6 \ ; \ \lim_{\text x \to \text a} \text{g(x)} = 3 \ }\checkmark

Perguntas similares