• Matéria: Matemática
  • Autor: dioogot8
  • Perguntado 5 anos atrás

reduzir essas potências​

Anexos:

Respostas

respondido por: Kin07
1

Resposta:

Solução:

c)

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \big[(0,05)^3 \big]^{-\:2} \cdot   \left ( \dfrac{5}{100} \right )^5 =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \Bigg[  \left ( \dfrac{5}{100} \right )^3 \bigg]^{-\:2} \cdot   \left ( \dfrac{5}{100} \right )^5 =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf   \left ( \dfrac{5}{100} \right )^{-6}  \cdot   \left ( \dfrac{5}{100} \right )^5 =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf   \left ( \dfrac{5}{100} \right )^{-6 +5}  =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf   \left ( \dfrac{5}{100} \right )^{-1}  =   \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf   \left ( \dfrac{100}{5} \right )^{1}  =   \left ( \dfrac{100}{5} \right )  = 20    \end{array}\right

Logo:

\boxed{ \boxed { \boldsymbol{\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \big[(0,05)^3 \big]^{-\:2} \cdot   \left ( \dfrac{5}{100} \right )^5 =  20\end{array}\right  }}} \quad \gets \mathbf{ Resposta }

d)

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( \dfrac{3}{2} \right )^{-2}  \div  \left ( \dfrac{2}{3} \right )^3 =   \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( \dfrac{2}{3} \right )^{2}  \div  \left ( \dfrac{2}{3} \right )^3 =   \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( \dfrac{4}{9} \right ) \div  \left ( \dfrac{8}{27} \right ) =   \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( \dfrac{4 \div 4}{9 \div 9} \right )  \cdot  \left ( \dfrac{27 \div 9}{8 \div 4} \right ) =   \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( \dfrac{1}{1} \right )  \cdot  \left ( \dfrac{3}{2} \right ) =   \dfrac{3}{2}  \end{array}\right

Logo:

\boxed{ \boxed { \boldsymbol{\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( \dfrac{3}{2} \right )^{-2} \div \left ( \dfrac{2}{3} \right )^2 = \dfrac{3}{2}   \end{array}\right  }}} \quad \gets \mathbf{ Resposta }

e)

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( 3,2 \right )^2 \cdot 6^{-1} \cdot  \left ( \dfrac{1}{6} \right )^{-4} =   \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left \left ( \dfrac{32}{10} \right )^2 \cdot 6^{-1} \cdot  6^{4} =   \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left \left ( \dfrac{32}{10} \right )^2 \cdot 6^{-1 +4} =   \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left \left ( \dfrac{32}{10} \right )^2 \cdot 6^{3} =   \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf   \dfrac{1024}{100} \cdot 216 =   \dfrac{221184}{100} = 2211,84 \end{array}\right

Logo:

\boxed{ \boxed { \boldsymbol{ \large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( 3,2 \right )^2 \cdot 6^{-1} \cdot  \left ( \dfrac{1}{6} \right )^{-4} =   2\:211,84  \end{array}\right }}} \quad \gets \mathbf{ Resposta }

f)

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \Bigg\{\Bigg[ \left ( \dfrac{5}{7} \right )^ {-2}  \Bigg]^{\frac{1}{2}}  \Bigg\}^3  =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \Bigg\{ \left ( \dfrac{5}{7} \right )^ {-2 \cdot \frac{1}{2} }  \Bigg\}^3  =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \Bigg\{ \left ( \dfrac{5}{7} \right )^ {-\: \frac{2}{2} }  \Bigg\}^3  =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \Bigg\{ \left ( \dfrac{5}{7} \right )^ {-\: 1 }  \Bigg\}^3  =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( \dfrac{5}{7} \right )^ {-\: 1 \times 3 }  =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( \dfrac{5}{7} \right )^ {-\:  3 }  =  \end{array}\right

\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \left ( \dfrac{7}{5} \right )^ {  3 }  =  \dfrac{343}{125}  \end{array}\right

Logo:

\boxed{ \boxed { \boldsymbol{\large \sf \displaystyle  \left\begin{array}{l l l l l } \sf  \Bigg\{\Bigg[ \left ( \dfrac{5}{7} \right )^ {-2}  \Bigg]^{\frac{1}{2}}  \Bigg\}^3  =  \end{array}\right   \dfrac{343}{125}  }}} \quad \gets \mathbf{ Resposta }

Explicação passo-a-passo:

RESOLVENDO EXPRESSÕES NUMÉRICAS:

Ordem das operações:

Potenciação e Radiciação

Multiplicação e Divisão

Soma e Subtração

Usando símbolos:

as operações que estão dentro dos parênteses

as operações que estão dentro dos colchetes

as operações que estão dentro das chaves

Dificuldade de visualizar no aplicativo , use o link à baixo no navegador:

https://brainly.com.br/tarefa/39601632

Anexos:
Perguntas similares