Respostas
Resposta:
Se for ∫ e^(x) * cos(x/2) dx
Fazendo por partes
u= cos(x/2) ==>du = (1/2) * [-sen(x/2)] dx
dv=e^(x) dx ==> ∫ dv = ∫ e^(x) dx ==> v= e^(x)
∫ e^(x) * cos(x/2) dx =e^(x) *cos(x/2) - ∫ e^(x) (1/2) * [-sen(x/2)] dx
∫ e^(x) * cos(x/2) dx =e^(x) *cos(x/2) + (1/2) ∫ e^(x)*sen(x/2) dx (i)
resolvendo por partes ∫ e^(x)*sen(x/2) dx
u=sen(x/2) ==>du =(1/2) * cos(x/2) dx
dv=e^(x) dx ==> ∫ dv = ∫ e^(x) dx ==> v= e^(x)
∫ e^(x)*sen(x/2) dx =e^(x) * sen(x/2) - ∫ e^(x) (1/2) * cos(x/2) dx
∫ e^(x)*sen(x/2) dx =e^(x) * sen(x/2) - (1/2)∫ e^(x)* cos(x/2) dx (ii)
(ii) em (i)
∫ e^(x) * cos(x/2) dx =e^(x) *cos(x/2) + (1/2) [e^(x) * sen(x/2) - (1/2)∫ e^(x)* cos(x/2) dx]
(5/4)∫ e^(x) * cos(x/2) dx =e^(x) *cos(x/2) + (1/2) *e^(x) * sen(x/2) + c
∫ e^(x) * cos(x/2) dx =(4/5)*e^(x) *cos(x/2) + (2/5) [e^(x) * sen(x/2) ] + c