Respostas
respondido por:
0
Resposta:
∫√x * ln(x) dx
Fazendo por Partes
u= ln(x) ==>du=(1/x) * dx
dv =√x dx ==> ∫ dv =∫ √x dx ==>v= x^(1/2+1) /(1/2+1) =(2/3)* x^(3/2)
∫√x * ln(x) dx =(2/3)* x^(3/2) * ln(x) - ∫ (2/3)* x^(3/2) (1/x) * dx
∫√x * ln(x) dx =(2/3)* x^(3/2) * ln(x) - (2/3)*∫ x^(3/2-1) * dx
∫√x * ln(x) dx =(2/3)* x^(3/2) * ln(x) - (2/3)*∫ x^(1/2) * dx
∫√x * ln(x) dx =(2/3)* x^(3/2) * ln(x) - (2/3)* x^(1/2+1) /(1/2+1) + c
∫√x * ln(x) dx =(2/3)* x^(3/2) * ln(x) - (2/3)* x^(3/2) /(3/2) + c
∫√x * ln(x) dx =(2/3)* √x³ * ln(x) - (4/9)* x^(3/2) + c
Perguntas similares
4 anos atrás
4 anos atrás
6 anos atrás
6 anos atrás
6 anos atrás