Respostas
Resposta:
PROPRIEDADES DA POTENCIAÇÃO – PARTE I
Conheça as propriedades das potências e simplifique as expressões.
Sabemos que a matemática utiliza símbolos para simplificar a escrita de muitas sentenças. A potenciação é uma forma simplificada de se escrever a multiplicação de um número por ele mesmo repetidamente. As propriedades da potenciação são recursos utilizados pela matemática para deixar mais simples algumas operações entre potências. Vamos analisar algumas dessas propriedades e verificar como elas facilitam nossas vidas.
Propriedade 1. Multiplicação de potências com bases iguais.
a) 72 x 73 = (7 x 7) x (7 x 7 x 7) = 7 x 7 x 7 x 7 x 7 = 75
b) 24 x 23 x 22 = (2 x 2 x 2 x 2) x (2 x 2 x 2) x (2 x 2) = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 29
Observando os dois exemplos acima, temos que:
72 x 73 = 72+3 = 75
24 x 23 x 22 = 24+3+2 = 29
Essa propriedade nos mostra que: na multiplicação de potências de bases iguais basta conservar a base da potência e somar os expoentes. Observe novamente:
35 x 38 = 35+8 = 313
Propriedade 2. Divisão de potências com bases iguais.
Com os exemplos acima, pode-se verificar que:
Essa propriedade nos mostra que: na divisão de potências com bases iguais basta conservar a base e diminuir os expoentes. Veja:
Propriedade 3. Potência de potência
Essa propriedade é chamada de potência de potência por apresentar uma base com dois ou mais expoentes.
Com o exemplo acima, podemos verificar que:
Essa propriedade nos mostra que: numa potência de potência devemos repetir a base e multiplicar os expoentes. Veja:
Propriedade 4. Potência com expoente zero.
Essa é uma propriedade muito interessante e que gera muita dúvida nas pessoas. Ela nos diz que todo número elevado a um expoente zero terá como resultado o número 1. De forma genérica seria:
Vejamos mais um exemplo:
Mas como podemos chegar a essa conclusão? Por que todo número elevado a zero é igual a 1?
Veja como é simples a explicação disso. Vamos fazer a divisão entre os números abaixo:
Mas como todo número dividido por ele mesmo resulta 1, temos que:
Com as duas igualdades, podemos concluir que:
Utilizando esse procedimento mostra-se que qualquer número, diferente de zero, elevado ao expoente zero resulta 1.