• Matéria: Matemática
  • Autor: cristianokriga
  • Perguntado 5 anos atrás

\int ( 1 - \frac { 1 } { \sqrt [ 3 ] { x ^ { 2 } } } )

Anexos:

Respostas

respondido por: elizeugatao
1

\displaystyle \int( 1-\frac{1}{\sqrt[3]{\text x^2}})\text{dx} \\\\\\ \int (1 - \frac{1}{\text x^{\frac{2}{3}}})\text{dx} \\\\\\ \int 1\text d\text x - \int  \text x^{\displaystyle (\frac{-2}{3})} \text {dx} \\\\\\ \text x - \frac{\displaystyle \text x^{\frac{-2}{3}+1}}{\displaystyle \frac{-2}{3}+1} + \text C \\\\\\ \text x - \frac{\displaystyle \text x^{\frac{1}{3}}}{\displaystyle \frac{1}{3}}+ \text C

portanto :

\huge\boxed{\int (1-\frac{1}{\sqrt[3]{\text x^2}})\text{dx}=\text x - 3\sqrt[3]{\text x} + \text C}\checkmark

Perguntas similares