Observe o polinômio representado no quadro abaixo.
p(x)=x⋅(x−3)⋅(x+2)p(x)=x⋅(x−3)⋅(x+2)
Quais são as raízes desse polinômio?
Respostas
Resposta:
0, 3 e -2.
Explicação passo-a-passo:
As raízes do polinômio são 0, 3 e -2.
Um número é a raiz de um polinômio quando, ao substituir seu valor na variável independente, o polinômio resulta em zero.
Abaixo, temos o polinômio P(x) escrito como o produto de 3 termos: x, x - 3 e x + 2. Como sabemos da multiplicação, se um dos termos for zero, todo o resultado será zero, assim, basta substituir x por valores que zeram um dos termos a cada vez:
P(x) = x . (x - 3) . (x + 2)
Se substituirmos x por 0, temos P(x) = 0, pois:
P(0) = 0 . (0 - 3) . (0 + 2)
P(0) = 0 . (-3) . 2
Se substituirmos x por 3, temos P(x) = 0, pois:
P(3) = 3 . (3 - 3) . (3 + 2)
P(3) = 3 . 0 . 5
Se substituirmos x por -2, temos P(x) = 0, pois:
P(-2) = 3 . (-2 - 3) . (-2 + 2)
P(-2) = 3 . (-5) . 0
Portanto, as raízes do polinômio são 0, 3 e -2.
Espero ter ajudado :D