• Matéria: Matemática
  • Autor: MuriloAnswersGD
  • Perguntado 5 anos atrás

Aplicando as Propriedades do Logaritmo Desenvolva:

a)
 log_{2} \bigg( \dfrac{2ab}{c}   \bigg)

b)
 log \bigg( \dfrac{ {a}^{3}. {b}^{2}  }{ {c}^{4} }  \bigg)

Respostas

respondido por: FioxPedo
9

a) Usando:

loga (x/y) = loga (x) - loga (y)

 log_{2}( \frac{2ab}{c} )

 log_{2}(2ab)  -  log_{2}(c)

 log_{2}(2)  +  log_{2}(a)  +   log_{2}(b)  -  log_{2}(c)

1 +  log_{2}(a)  +  log_{2}(b)  -  log_{2}(c)

b)

 log( \frac{x}{y} )  =     log(x)  -  log(y)

 log( \frac{ {a}^{3}  \times {b}^{2}  }{ {c}^{4} } )

(3 log(a)  + 2 log(b) ) - 4 log(c)


MuriloAnswersGD: Ótima Resposta! obrigado
FioxPedo: de nada :)
FioxPedo: Tento ajudar o máximo!!
MuriloAnswersGD: (ノ◕ヮ◕)ノ*.✧
respondido por: Anônimo
12

\sf \bullet A) \to \boxed{\boxed{\sf =1+log _2\left(a\right)+log _2\left(b\right)-log _2\left(c\right)}}

\tt EXPLICA \c{C}AO\\\\\\\sf log _2\left(\dfrac{2ab}{c}\right)\\\\\\\sf \displaystyle \bullet {Aplicar\:as\:propriedades\:dos\:logaritmos}:\quad log _c\left(\frac{a}{b}\right)=log _c\left(a\right)-log _c\left(b\right)\\\\\\\sf log _2\left(\frac{2ab}{c}\right)=log _2\left(2ab\right)-log _2\left(c\right)\\\\\\\sf =log _2\left(2ab\right)-log _2\left(c\right)\\\\\\\sf \bullet log _c\left(ab\right)=log _c\left(a\right)+log _c\left(b\right)\\

\sf  log _2\left(2ab\right)=log _2\left(2\right)+log _2\left(a\right)+log _2\left(b\right)\\\\\\\sf =log _2\left(2\right)+log _2\left(a\right)+log _2\left(b\right)-log _2\left(c\right)\\\\\\\sf log _a\left(a\right)=1\\\\\\\boxed{\boxed{\sf =1+log _2\left(a\right)+log _2\left(b\right)-log _2\left(c\right)}}

\sf \bullet B) \to \boxed{\boxed{\sf =3log _{10}\left(a\right)+2log _{10}\left(b\right)-4log _{10}\left(c\right)}}

\tt Vamos \ novamente\\\\\\\sf  \displaystyle log\left(\frac{a^3\cdot \:b^2}{c^4}\right)\\\\\\\sf log _{10}\left(\frac{a^3b^2}{c^4}\right)\\\\\\\large{\star} \  log _c\left(\frac{a}{b}\right)=log _c\left(a\right)-log _c\left(b\right)\\\\\\\sf log _{10}\left(\frac{a^3b^2}{c^4}\right)=log _{10}\left(a^3b^2\right)-log _{10}\left(c^4\right)\\\\\\\sf =log _{10}\left(a^3b^2\right)-log _{10}\left(c^4\right)\\\\\\\sf log _{10}\left(c^4\right)=4log _{10}\left(c\right)\\

\sf \displaystyle =log _{10}\left(a^3b^2\right)-4log _{10}\left(c\right)\\\\\\\sf \star Regra \ dos \ logaritmos \iff log _c\left(ab\right)=log _c\left(a\right)+log _c\left(b\right)\\\\\\\sf log _{10}\left(a^3b^2\right)=log _{10}\left(a^3\right)+log _{10}\left(b^2\right)\\\\\\\sf =log _{10}\left(a^3\right)+log _{10}\left(b^2\right)-4log _{10}\left(c\right)\\\\\\\sf \star \ log _a\left(x^b\right)=b\cdot log _a\left(x\right)\\\\\\\sf log _{10}\left(a^3\right)=3log _{10}\left(a\right)\\

\sf log _{10}\left(a^3\right)=3log _{10}\left(a\right)\\\\\\\sf =3log _{10}\left(a\right)+log _{10}\left(b^2\right)-4log _{10}\left(c\right)\\\\\\\sf \bullet log _a\left(x^b\right)=b\cdot log _a\left(x\right)\\\\\\\sf log _{10}\left(b^2\right)=2log _{10}\left(b\right)\\\\\\\sf \to \boxed{\boxed{\sf =3log _{10}\left(a\right)+2log _{10}\left(b\right)-4log _{10}\left(c\right)}}

Perguntas similares