suponha que em jakku, planeta de um mundo desértico isolado nas extensões ocidentais, com operações de mineração no norte e com montículos no sul, onde líquen podia ser extraído para a produção de bebida alcoólica. o império galáctico fabricava a partir do líquen extraído, dois tamanhos diferentes de garrafas dessa bebida alcoólica e para otimizar o uso dos recursos, foi proposto a construção de um modelo de programação linear, conforme informações a seguir: a disponibilidade de materiais é de 200 kg/dia e a mão de obra disponível por dia é de 150 horas. x1 = garrafa de 1 litro x2 = garrafa de 2 litros pede-se: resolva o sistema encontrado pelo programa solver (excel) e determine os valores para z e as variáveis de decisão (x1 e x2). i. z (lucro máximo) = r$ 9.250,00; x1 = 37,5 unidades; x2 = 50 unidades. ii. z (lucro máximo) = r$ 10.200,00; x1 = 37,5 unidades; x2 = 50 unidades. iii. z (lucro máximo) = r$ 11.250,00; x1 = 0 unidades; x2 = 37,5 unidades. iv. z (lucro máximo) = r$ 12.200,00; x1 = 20 unidades; x2 = 50 unidades. v. z (lucro máximo) = r$ 120.200,00; x1 = 50 unidades; x2 = 18 unidades. assinale a opção que apresenta o valor de z e as variáveis de decisão.
Respostas
respondido por:
10
Resposta: Alternativa C: III apenas.
Explicação: III. Z (lucro máximo) = R$ 11.250,00; X1 = 0 unidades; X2 = 37,5 unidades.
respondido por:
4
Resposta:
III. Z (lucro máximo) = R$ 11.250,00; X1 = 0 unidades; X2 = 37,5 unidades
Explicação:
Perguntas similares
4 anos atrás
4 anos atrás
4 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás