Respostas
Olá, boa noite.
Para resolvermos esta questão, devemos nos relembrar de algumas propriedades estudadas sobre o cálculo de áreas e integrais.
Sejam duas funções e , contínuas e integráveis em um intervalo fechado , onde . A área da região compreendida entre estas curvas neste intervalo é calculada pela integral: .
Então, devemos determinar a área da região compreendida entre as curvas e no intervalo
Agora, determinamos qual função tem imagem maior neste intervalo. Facilmente, vemos que neste intervalo.
Assim, a área da região compreendida entre estas curvas será calculada pela integral:
Some os valores
Para calcular esta integral, lembre-se que:
- A integral de uma soma de funções é igual a soma das integrais das funções: .
- A integral do produto entre uma constante e uma função pode ser reescrita como: .
- A potência .
- A integral de uma potência é calculada pela regra da potência: .
- A integral definida de uma função contínua e integrável em um intervalo fechado é calculada de acordo com o Teorema Fundamental do Cálculo: , em que é a antiderivada de .
Aplique a regra da soma
Aplique a regra da constante
Aplique a regra da potência
Some os valores nos expoentes e denominadores
Aplique os limites de integração
Calcule as potências e multiplique os valores
Some os valores
Esta é a área da região compreendida entre as curvas neste intervalo.