• Matéria: Matemática
  • Autor: eduardafariasg65
  • Perguntado 5 anos atrás

Usando a fórmula de Bhaskara, determine o conjunto solução das equações abaixo: a) x2 − 5x + 6 = 0 b) 2x2+ 12x − 14 = 0 c) −x² − 4x + 5 = 0

Respostas

respondido por: MaHePire
2

Resposta:

a) S = {2; 3}

b) S = {-7; 1}

c) S = {-5; 1}

Explicação passo-a-passo:

a) \:  {x}^{2}  - 5x + 6 = 0 \\  \\ a = 1 \\ b = ( - 5) \\ c = 6 \\  \\  \Delta =  {b}^{2}  - 4ac \\ \Delta =  {( - 5)}^{2}  - 4 \cdot1 \cdot6 \\ \Delta = 25 - 24 \\ \Delta = 1 \\  \\ x =  \frac{ - b  \pm \sqrt{\Delta} }{2a}  \\  \\ x =  \frac{ - ( - 5) \pm \sqrt{1}  }{2 \cdot1 }  \\  \\ x =  \frac{5 \pm1}{2}  \\  \\  x_{1} =  \frac{5 + 1}{2}  =  \frac{6}{2}  =  \bf{3}  \\  \\  x_{2} =  \frac{5 - 1}{2}  =  \frac{4}{2}  =  \bf{2}

b) \: 2 {x}^{2}  + 12x - 14 = 0 \:  \bf{( \div 2)}  \\  {x}^{2}  + 6x - 7 = 0  \\  \\ a = 1 \\ b = 6 \\ c = ( - 7) \\  \\  \Delta =  {b}^{2}  - 4ac \\ \Delta =  {6}^{2}  - 4 \cdot1 \cdot( - 7)\\ \Delta = 36  + 28\\ \Delta = 64 \\  \\ x =  \frac{ - b  \pm \sqrt{\Delta} }{2a}  \\  \\ x =  \frac{  - 6 \pm \sqrt{64}  }{2 \cdot1 }  \\  \\ x =  \frac{ - 6 \pm8}{2}  \\  \\  x_{1} =  \frac{ - 6 + 8}{2}  =  \frac{2}{2}  =  \bf{1}  \\  \\  x_{2} =  \frac{ - 6- 8}{2}  =   - \frac{14}{2}  =  \bf{ - 7}

c) \:  -  {x}^{2}  - 4x + 5 = 0 \:  \cdot( - 1) \\  {x}^{2}  + 4x - 5 = 0 \\  \\ a = 1 \\ b = 4\\ c = ( - 5) \\  \\  \Delta =  {b}^{2}  - 4ac \\ \Delta =  {4}^{2}  - 4 \cdot1 \cdot( - 5) \\ \Delta = 16  + 20 \\ \Delta = 36 \\  \\ x =  \frac{ - b  \pm \sqrt{\Delta} }{2a}  \\  \\ x =  \frac{ - 4 \pm \sqrt{36}  }{2 \cdot1 }  \\  \\ x =  \frac{ - 4 \pm6}{2}  \\  \\  x_{1} =  \frac{ - 4 + 6}{2}  =  \frac{2}{2}  =  \bf{1}  \\  \\  x_{2} =  \frac{ - 4 - 6}{2}  =   - \frac{10}{2}  =  \bf{ - 5}

Espero ter ajudado! :)

respondido por: Anônimo
1

\large\boxed{\begin{array}{l}   \rm{a)}\rm \: x {}^{2}  - 5x + 6 = 0 \\  \\  \rm\Delta = b  {}^{2}  - 4 \cdot{a}  \cdot{c } \\\Delta = ( - 5) {}^{2} - 4   \cdot1 \cdot6 \\ \Delta = 25 - 24 \\ \Delta = 1 \\  \\  \rm \: x =  \dfrac{ - b \pm  \sqrt{\Delta} }{2 \cdot{a}}  \\  \\  \rm \: x =  \dfrac{ - ( - 5) \pm \sqrt{1} }{2 \cdot1} \\  \\  \rm \: x =  \dfrac{5 \pm1}{2}   \begin{cases} \rm \: x _{1} =  \dfrac{5 + 1}{2}   =  \dfrac{6}{2} = 3  \\  \\  \rm \: x_{2} =  \dfrac{5 - 1}{2}   =  \dfrac{4}{2}  = 2\end{cases} \\  \\  \rm \: S =  \{3,2 \}\end{array}}

\large\boxed{\begin{array}{l}  \rm{b)} \rm \: 2x {}^{2} + 12x - 14 = 0 \\  \\  \rm\Delta = b {}^{2}  - 4 \cdot{a} \cdot{c} \\\Delta = 12 {}^{2}  - 4 \cdot2 \cdot( - 14) \\   \Delta = 144 + 112 \\ \Delta = 256 \\  \\  \rm \: x =  \dfrac{ - b \pm \sqrt{\Delta} }{2 \cdot{a}}  \\  \\  \rm \: x =  \dfrac{ - 12 \pm \sqrt{256} }{2 \cdot2}  \\  \\  \rm \: x =  \dfrac{ - 12 \pm16}{4} \begin{cases}  \rm \: x _1 =  \dfrac{ - 12 + 16}{4}  =  \dfrac{4}{4}  = 1  \\  \\  \rm \: x _2  =  \dfrac{ - 12 - 16}{4} =  \dfrac{ - 28}{4}   =  - 7\end{cases}  \\  \\  \rm \: S =  \{1, - 7 \}\end{array}}

\large\boxed{\begin{array}{l}  \rm{c)} \rm \:  - x {}^{2} - 4x + 5 = 0 \\  \\  \rm\Delta = b {}^{2}  - 4 \cdot{a} \cdot{c} \\ \Delta =  ( - 4) {}^{2}  - 4 \cdot{ (- 1)} \cdot5  \\\Delta = 16 + 20 \\\Delta = 36   \\  \\  \rm \: x =  \dfrac{ - b \pm \sqrt{\Delta} }{2 \cdot{a}}  \\  \\  \rm \: x =  \dfrac{ - ( - 4) \pm \sqrt{36} }{2 \cdot{( - 1)}}  \\  \\  \rm \: x =  \dfrac{4 \pm6}{ - 2}  \begin{cases} \rm \: x _1 =  \dfrac{4 + 6}{ - 2} =  \dfrac{10}{ - 2}  =  - 5 \\  \\  \rm \: x _{2} =  \dfrac{4 - 6}{ - 2}   =  \dfrac{ - 2}{ - 2}  = 1\end{cases} \\  \\  \rm \: S =  \{1, - 5 \}\end{array}}

Perguntas similares