• Matéria: Física
  • Autor: szleti
  • Perguntado 5 anos atrás

Duas partículas eletricamente carregadas com cargas de +8,0μC, cada uma, são colocadas no vácuo a uma distância de 30 cm, uma da outra. Sendo k = 9.10⁹ N.m²/C², a força de interação entre essas cargas é: *
5 pontos
a) de atração e igual a 1,6 N
b) de repulsão e igual a 1,6 N
c) de atração e igual a 6,4 N
d) de repulsão e igual a 6,4 N
e) impossível de ser determinada

Respostas

respondido por: Kin07
8

Resposta:

Solução:

\sf \displaystyle  Dados: \begin{cases}  \sf q_1  = +8,0\mu\:C = + 8,0 \cdot 10^{-6}\; C   \\  \sf q_2 = +8,0\mu\:C = + 8,0 \cdot 10^{-6}\; C   \\   \sf  Q =  q_1 = q_2  \\    \sf d = 30\:cm \div 0,30\:m \\    \sf k= 9\cdot 10^9\: N \cdot m^2 /C^2 \\    \sf F_{el} = \:?\: N \end{cases}

Lei de Coulomb:

“A força elétrica de ação mútua entre duas cargas elétricas puntiformes tem intensidade diretamente proporcional ao produto das cargas e inversamente proporcional ao quadrado da distância que as separa”.

Pela Lei de Coulomb

\sf \displaystyle  F_{el} = \dfrac{k \cdot \mid q_1 \mid \cdot \mid q_2 \mid}{d^2 }

Onde:

F → força, em newton (N);

q1 e q2 → cargas elétricas, em coulomb (C);

r → distância entre as cargas, em metros (m);

K → constante eletrostática. No vácuo seu valor é 9.10^9 N.m²/C².

Substituir os valores do enunciado na fórmula da Lei de Coulomb, temos:

\sf \displaystyle F_{el} = \dfrac{K  \cdot q_1 \cdot q_2 }{d^2}

\sf \displaystyle F_{el} = \dfrac{9 \cdot10^9  \cdot 8 \cdot10^{- 6} \cdot 8 \cdot10^{-6}  }{(0,3)^2}

\sf \displaystyle F_{el} = \dfrac{9 \cdot 8 \cdot  8 \cdot10^{9- 6 -6}  }{0,09}

\sf \displaystyle F_{el} = \dfrac{576 \cdot10^{9- 12}  }{0,09}

\sf \displaystyle F_{el} = \dfrac{576 \cdot10^{-3}  }{0,09}

\sf \displaystyle F_{el} = \dfrac{0,576 }{0,09}

\boxed{ \boxed { \boldsymbol{ \sf  \displaystyle F_{el} = 6,4\: N  }}} \quad \gets \mathbf{ Resposta }

Alternativa correta é o item D.

Explicação:

Anexos:

szleti: Muito obrigada! Fiz aqui a conta e deu certo
Kin07: Muito obrigado por ter escolhido como a melhor resposta.
Kin07: Disponha.
szleti: denada :)
Perguntas similares