• Matéria: Física
  • Autor: coset67924
  • Perguntado 5 anos atrás

A corrente através de um resistor de 5 Ω é i(t) = 40 sen(377t + 30°). A expressão para a tensão aplicada no resistor é:



a.
v(t) = 200 sen(377t - 60°) V
b.
v(t) = 200 sen(377t + 120°) V
c.
v(t) = 200 sen(377t + 30°) V
d.
v(t) = 8 sen(377t + 30°) V
e.
v(t) = 8 sen(377t + 120°) V

Respostas

respondido por: Lionelson
1

A expressão da tensão no resistor é:

                           \Large\displaystyle\text{$\begin{aligned}v(t) &= v_p\sin(\omega t+\phi)\\ \\v(t) &= 200\sin(377 t+30^\circ)\text{ V}\\ \\\end{aligned}$}

Portanto, alternativa C

Como o resistor, diferentemente do indutor e do capacitor não altera a defasagem entre corrente e tensão temos que ambos continuarão com a mesma fase, pela primeira lei de Ohm:

                                    \Large\displaystyle\text{$\begin{aligned}v(t) = v_p\sin(\omega t+\phi)\end{aligned}$}

                                               \Large\displaystyle\text{$\begin{aligned}V = R\cdot i\end{aligned}$}

Temos que expressão da tensão será:                              

                               \Large\displaystyle\text{$\begin{aligned}v(t) &= v_p\sin(\omega t+\phi)\\ \\v(t) &= 5\cdot 40\sin(377 t+30^\circ)\\ \\v(t) &= 200\sin(377 t+30^\circ)\\ \\\end{aligned}$}

Curiosamente, a frequência é 60hz, então isso se assemelharia a um resistor de 5Ω ligado a uma uma tomada de 115V.

Espero ter ajudado

Qualquer dúvida respondo nos comentários.

Veja mais sobre em:

brainly.com.br/tarefa/24112519

brainly.com.br/tarefa/27061408

Anexos:
Perguntas similares