• Matéria: Matemática
  • Autor: roberta2021112805323
  • Perguntado 4 anos atrás

Quais sao as raizes da equação ײ-×-12=0

Respostas

respondido por: guilhermenogueira345
1

Resposta:Olá! Segue a resposta com algumas explicações.

(I)Sabendo-se que uma equação do segundo grau é uma igualdade do tipo ax²+bx+c=0 (com a necessariamente diferente de zero, caso contrário, o termo ax²  zeraria e ter-se-ia uma equação do primeiro grau), inicialmente, para melhor entendimento das demais etapas da resolução, pode-se proceder à determinação dos coeficientes por meio de comparação entre a equação fornecida e a forma genérica da equação do segundo grau:

1.x² - 1.x - 12 = 0               (Veja a Observação 1.)

a.x² + b.x  + c  = 0

Coeficientes: a = 1, b = -1, c = (-12)

OBSERVAÇÃO 1: Quando o coeficiente for 1, ele pode ser omitido, pois está subentendido (assim, em vez de 1.x², tem-se apenas x²). No caso de coeficiente -1, pode-se escrever apenas o sinal de negativo (assim, em vez de -1.x, tem-se -x).

(II)Cálculo do discriminante, utilizando-se dos coeficientes:

Δ = b² - 4 . a . c

Δ = (-1)² - 4 . (1) . (-12) ⇒

Δ = 1 - 4 . (1) . (-12) ⇒          

Δ = 1 - 4 . (-12) ⇒             (Veja a Observação 2.)

Δ = 1 + 48 ⇒          

Δ = 49

OBSERVAÇÃO 2: Na parte destacada, aplicou-se a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam em sinal de positivo (+).

→Como o discriminante (Δ) resultou em um valor maior que zero, a equação x²-x-12=0 terá duas raízes diferentes.

(IV)Aplicação da fórmula de Bhaskara (ou fórmula resolutiva de equação do segundo grau), utilizando-se dos coeficientes e do discriminante:

x = (-b ± √Δ) / 2 . a ⇒

x = (-(-1) ± √49) / 2 . (1) ⇒

x = (1 ± 7) / 2 ⇒    

x' = (1 + 7) / 2 = 8/2 ⇒ x' = 4

x'' = (1 - 7) / 2 = -6/2 ⇒ x'' = -3

Resposta: As raízes da equação são -3 e 4.

Outras maneiras, porém mais formais, de indicar a resposta:

S={x E R / x = -3 ou x = 4} (leia-se "o conjunto-solução é x pertence ao conjunto dos números reais, tal que x é igual a menos três ou x é igual a quatro") ou

S={-3, 4} (leia-se "o conjunto-solução é constituído pelos elementos menos três e quatro".)

======================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo x = -3 na equação fornecida no exercício, verifica-se que a igualdade será mantida, confirmando-se que esta é uma das raízes da equação:

1.x² - 1.x - 12 = 0 ⇒

1 . (-3)² - 1 . (-3) - 12 = 0 ⇒

1 . (-3)(-3) - 1 . (-3) - 12 = 0 ⇒

1 . 9 + 3 - 12 = 0 ⇒

9 + 3 - 12 = 0 ⇒  

12 - 12 = 0 ⇒          

0 = 0               (Provado que x = -3 é solução (raiz) da equação.)

→Substituindo x = 4 na equação fornecida no exercício, verifica-se que a igualdade será mantida, confirmando-se que esta é uma das raízes da equação:

1.x² - 1.x - 12 = 0 ⇒

1 . (4)² - 1 . (4) - 12 = 0 ⇒

1 . (4)(4) - 1 . (4) - 12 = 0 ⇒

1 .16 - 4 - 12 = 0 ⇒

16 - 4 - 12 = 0 ⇒  

16 - 16 = 0 ⇒          

0 = 0               (Provado que x = 4 é solução (raiz) da equação.)

respondido por: ctsouzasilva
2

Resposta:

S = {-3, 4}

Explicação passo-a-passo:

Uma maneira de resolver é:

x² - x - 12 = 0

x² + Sx + P = 0

As raízes são dois números que somados resulta em 1 e multiplicada resulte em -12.

S = -3 + 4 = 1

P = -3 . 4 = -12

S = {-3, 4}

Perguntas similares