Respostas
respondido por:
0
Z = 16 + 0 i
Wk = ρ^1/n[cos(θ+2kπ)/n + isen(θ + 2kπ)/n] , k ∈ Z
ρ = √(16² + 0²) => ρ = 16
cosθ = a/ρ => cosθ = 16/16 = 1
senθ = b/ρ => senθ = 0/16 = 0
cosθ =1 e senθ = 0 => θ = 0
p/ k = 0 => W0 = 16^1/4[cos(0 + 2.0.π)/4 + isen(0 + 2.0π)/4]
W0 = 2(cos0 + isen0)
w0 = 2(1 + 0)
W0 = 2
p/ k = 1 => W1 = 16^1/4[cos(0 +2.1.π)/4 + isen(0 +2.1.π)/4]
W1 = 2(cosπ/2 + isenπ/2)
W1 = 2(0 + i.1)
W1 = 2i
p/ k = 2 => W2 = 16^1/4[cos(0 + 2.2.π)/4 + isen(0 + 2.2.π)/4]
W2 = 2(cosπ + isenπ)
W2 = 2(-1 + i.0)
W2 = -2
p/ k = 3 => W3 = 16^1/4[cos(0 + 2.3.π)/4 + isen(0 + 2.3.π)/4]
W3 = 2( cos3π/2 + isen3π/2)
Z4 = 2[(0 + i(-1)]
W3 = 2(-i)
W3 = -2i
S = { -2, 2, -2i, 2i }
Wk = ρ^1/n[cos(θ+2kπ)/n + isen(θ + 2kπ)/n] , k ∈ Z
ρ = √(16² + 0²) => ρ = 16
cosθ = a/ρ => cosθ = 16/16 = 1
senθ = b/ρ => senθ = 0/16 = 0
cosθ =1 e senθ = 0 => θ = 0
p/ k = 0 => W0 = 16^1/4[cos(0 + 2.0.π)/4 + isen(0 + 2.0π)/4]
W0 = 2(cos0 + isen0)
w0 = 2(1 + 0)
W0 = 2
p/ k = 1 => W1 = 16^1/4[cos(0 +2.1.π)/4 + isen(0 +2.1.π)/4]
W1 = 2(cosπ/2 + isenπ/2)
W1 = 2(0 + i.1)
W1 = 2i
p/ k = 2 => W2 = 16^1/4[cos(0 + 2.2.π)/4 + isen(0 + 2.2.π)/4]
W2 = 2(cosπ + isenπ)
W2 = 2(-1 + i.0)
W2 = -2
p/ k = 3 => W3 = 16^1/4[cos(0 + 2.3.π)/4 + isen(0 + 2.3.π)/4]
W3 = 2( cos3π/2 + isen3π/2)
Z4 = 2[(0 + i(-1)]
W3 = 2(-i)
W3 = -2i
S = { -2, 2, -2i, 2i }
hcsmalves:
Outro modo é? Se Z^4 = 16 => z² = 4 => Z = +- 2 ou Z² = -4 => Z = +-2i
Perguntas similares
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás