• Matéria: Matemática
  • Autor: britofamiliapaz
  • Perguntado 4 anos atrás

1) Calcule:
(a) log2 16
(b) log3 81
(c) log5 125
(d) log6 1296
(e) log12 1728
(f) log2 4096
(g) log28 1

Respostas

respondido por: Branco666
25

Explicação passo-a-passo:

log_216=k\\2^k=16\\2^k=2^4\\k=4

log_381=k\\3^k=81\\3^k=9^3\\3^k=(3^3)^3\\3^k=3^{3\cdot3}\\3^k=3^9\\k=9

log_5125=k\\5^k=125\\5^k=25^2\\5^k=(5^2)^2\\5^k=5^{2\cdot2}\\5^k=5^4\\k=4

log_61296\\6^k=1296\\6^k=36^2\\6^k=(6^2)^2\\6^k=6^{2\cdot2}\\6^k=6^4\\k=4

log_{12}1728=k\\12^k=1728\\12^k=12^3\\k=3

log_24096=k\\2^k=64^2\\2^k=(8^2)^2\\2^k=(2^3)^4\\2^k=2^{3\cdot4}\\2^k=2^{12}\\k=12

log_{28}1=k\\28^k=1\\28^k=28^0\\k=0

Perguntas similares