• Matéria: Matemática
  • Autor: sayuri01110
  • Perguntado 4 anos atrás

Dado senx=- √3/2, com 270° < x < 360°

. Determine cosx, tgx, sectx, cossectx e cotgx.​

Respostas

respondido por: niltonjunior20oss764
1

\dfrac{3\pi}{2}&lt;x&lt;2\pi

\boxed{\sin{x}=-\dfrac{\sqrt{3}}{2}}

\sin^2{x}+\cos^2{x}=1\ \therefore\ \cos{x}=\pm\sqrt{1-\dfrac{3}{4}}\ \therefore\ \cos{x}=\pm\dfrac{1}{2}

\dfrac{3\pi}{2}&lt;x&lt;2\pi\ \therefore\ \boxed{\cos{x}=\dfrac{1}{2}}

\tan{x}=\dfrac{\sin{x}}{\cos{x}}=-\dfrac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\ \therefore\ \boxed{\tan{x}=-\sqrt{3}}

\csc{x}=\dfrac{1}{\sin{x}}=-\dfrac{1}{\frac{\sqrt{3}}{2}}=-\dfrac{2}{\sqrt{3}}\ \therefore\ \boxed{\csc{x}=-\dfrac{2\sqrt{3}}{3}}

\sec{x}=\dfrac{1}{\cos{x}}=\dfrac{1}{\frac{1}{2}}\ \therefore\ \boxed{\sec{x}=2}

\cot{x}=\dfrac{1}{\tan{x}}=-\dfrac{1}{\sqrt{3}}\ \therefore\ \boxed{\cot{x}=-\dfrac{\sqrt{3}}{3}}

Perguntas similares