• Matéria: Matemática
  • Autor: ana14640
  • Perguntado 4 anos atrás

CALCULE OS LOGARÍTIMOS USANDO AS PROPRIEDADES

a) log81 27

b) log 128 32

c) log 625 25

d) log 343 49

e) log16 1 64

Respostas

respondido por: niltonjunior20oss764
1

\boxed{\log_{b^m}{a^n}=\dfrac{n}{m}\log_b{a}}

a)

\log_{81}{27}=\log_{3^4}{3^3}=\dfrac{3}{4}\log_3{3}=\boxed{\dfrac{3}{4}}

b)

\log_{128}{32}=\log_{2^7}{2^5}=\dfrac{5}{7}\log_2{2}=\boxed{\dfrac{5}{7}}

c)

\log_{625}{25}=\log_{5^4}{5^2}=\dfrac{2}{4}\log_5{5}=\boxed{\dfrac{1}{2}}

d)

\log_{343}{49}=\log_{7^3}{7^2}=\dfrac{2}{3}\log_7{7}=\boxed{\dfrac{2}{3}}

e)

\log_{16}{\dfrac{1}{64}}=\log_{2^4}{2^{-6}}=-\dfrac{6}{4}\log_2{2}=\boxed{-\dfrac{3}{2}}


ana14640: muito obrigada
ana14640: f) log25 1 125
g) log27 1 243
h) log4 1 32
Perguntas similares