• Matéria: Matemática
  • Autor: grazy7784
  • Perguntado 4 anos atrás

determine a PG crescente de três termos tal que a soma dos 3 termos e 14 e o produto deles è 64​

Respostas

respondido por: niltonjunior20oss764
1

\mathrm{Progress\tilde{a}o\ geom\acute{e}trica}\Longrightarrow \left\{\dfrac{x}{q},x,xq\right\}.

\left(\dfrac{x}{q}\right)(x)(xq)=64\Longrightarrow x^3=64\Longrightarrow x=\sqrt[3]{64}\ \therefore\ \boxed{x=4}

\dfrac{x}{q}+x+xq=14\Longrightarrow x\bigg(\dfrac{1}{q}+1+q\bigg)=14\Longrightarrow 4\left(1+q+q^2\right)=14q

\Longrightarrow 2+2q+2q^2=7q\Longrightarrow 2q^2-5q+2=0

q=\dfrac{-(-5)\pm\sqrt{(-5)^2-4(2)(2)}}{2(2)}=\dfrac{5\pm3}{4}\Longrightarrow q=\dfrac{1}{2}\ \text{ou}\ q=2

\mathrm{A\ PG\ \acute{e}\ crescente}\Longrightarrow q>1\ \therefore\ \boxed{q=2}

\left\{\dfrac{x}{q},x,xq\right\}\Longrightarrow\boxed{\left\{2,4,8\right\}}


grazy7784: obgd
Perguntas similares