• Matéria: Matemática
  • Autor: leninhapereira2
  • Perguntado 9 anos atrás

o calculo da integral raiz quadrada 3-2x * x² dx. por substituição


Niiya: integral de (3 - 2x)x²dx?

Respostas

respondido por: carlosmath
1
Asumiré que la pregunta es
           \displaystyle
\text{Calcular la siguiente integral }\int x^2\sqrt{3-2x}\,dx

Solución
Sustitución: 
       u=\sqrt{3-2x}\to du = -\dfrac{x}{\sqrt{3-2x}}dx\to u\,du=-x\,dx

Por otro lado se ve u=\sqrt{3-2x}\to x=\dfrac{3-u^2}{2}, por ello dx=\dfrac{2u}{u^2-3}du, entonces sustituimos

        \displaystyle
\int x^2\sqrt{3-2x}\,dx=\int \left(\dfrac{3-u^2}{2}\right)^2\cdot u\cdot \dfrac{2u}{u^2-3}du\\ \\ \\
\int x^2\sqrt{3-2x}\,dx=\dfrac{1}{2}\int u^2(u^2-3)\,du\\ \\ \\
\int x^2\sqrt{3-2x}\,dx=\dfrac{1}{10} u^5-\dfrac{1}{2}u^3+C\\ \\ \\
\boxed{\int x^2\sqrt{3-2x}\,dx=\dfrac{1}{10} \sqrt{3-2x}^{\,5}-\dfrac{1}{2}\sqrt{3-2x}^{\,3}+C}


respondido por: onesorcerer01
1

Resposta:

The answer above is good but i think theres a little mistake,isn't it?

u = sqrt(3-2x)

du = (\frac{1}{2\sqrt{3-2x} } ) (3-2x)'dx

du=(-1/u)dx \\ dx=-udu

because  \\\frac{d}{dx} (3-2x) = -2

it will change the integral as follows

u^{2}  = (3-2x)\\ x = \frac{3-u^{2} }{2} \\ \\thus\\\\\int\limits \frac{(3-u^{2})^{2}  }{4}  u (-u) \, du

Perguntas similares