• Matéria: Matemática
  • Autor: livia4627
  • Perguntado 4 anos atrás

alguém me ajuda por favor

Anexos:

Respostas

respondido por: laravieira234
0

the answers are in red

question 1) for the angle T:

 \small{sin(angle) =  \frac{side \:  opposite  \: to \:  that  \: angle}{hypotenuse} }

\huge{ \bold{\red{sin \: T =  \frac{8}{17} }}}

*you can divide these two numbers and have the approximate decimal number for this fraction

...

 \small{cos(angle) =  \frac{side \:  adjacent  \: to \:  that  \: angle}{hypotenuse} }

   \huge{\bold{\red{cos \: T =  \frac{15}{17} }}}

*you can divide these two numbers and have the approximate decimal number for this fraction

...

 \small{tan(angle) =  \frac{side \:  opposite  \: to \:  that  \: angle}{side \: adjacent \: to \: that \: angle} }

  \red{ \bold{\huge{tan \: T =  \frac{8}{15} }}}

*you can divide these two numbers and have the approximate decimal number for this fraction

.......

.......

for the angle G:

\small{sin(angle) =  \frac{side \:  opposite  \: to \:  that  \: angle}{hypotenuse} }

 \huge{\bold{\red{sin \: G  =  \frac{15}{17} }}}

*you can divide these two numbers and have the approximate decimal number for this fraction

.....

 \small{cos(angle) =  \frac{side \:  adjacent  \: to \:  that  \: angle}{hypotenuse} }

  \huge{ \red{ \bold{cos \: G \:  =  \frac{8}{17} }}}

*you can divide these two numbers and have the approximate decimal number for this fraction

....

tan(angle) =  \frac{side \: opposite \: to \: that \: angle}{side \: adjacent \: to \: that \: angle}

  \huge{\bold {\red{tan \: G =  \frac{15}{8} }}}

*you can divide these two numbers and have the approximate decimal number for this fraction

......

.......

.......

.....

question 2)

we have the opposite leg ( opposite side of 36° ) and tha hypotenuse. then we have to do the sine

* remember: sin36° said it is 0,58

then :

\small{sin(angle) =  \frac{side \:  opposite  \: to \:  that  \: angle}{hypotenuse} }

\small{sin36° =  \frac{10}{x} }

*replacing the value they gave of the 36 ° sine:

0,58 =  \frac{10}{x}

multiply crossed:

0,58 \: . \: x = 10

0,58x = 10

x =  \frac{10}{ 0,58}

  \huge {\bold{\red{x = 17,241}}}

Perguntas similares