Respostas
como estamos à procura de x, e não de – x, vamos agora multiplicar ambos os lados por (– 1).
(– 1)· (– x) = (– 2) · (– 1)
x = 2
veja um exemplo:
2x – 8 = 3x – 10
O primeiro passo é fazer com que o número – 8 desapareça do primeiro membro. Para isso, vamos somar o número 8 em ambos os lados da equação.
2x – 8 + 8 = 3x – 10 + 8
2x = 3x – 2
O próximo passo é fazer com que 3x desapareça do segundo membro. Para isso, vamos subtrair 3x em ambos os lados.
2x – 3x = 3x – 2 – 3x
– x = – 2
Existe um macete decorrente do princípio da equivalência que facilita encontrar a solução de uma equação. De acordo com essa técnica, devemos deixar tudo que depende da incógnita no primeiro membro e tudo que não depende da incógnita no segundo membro. Para isso, basta “passar” o número para o outro lado da igualdade, trocando seu sinal pelo sinal oposto. Se um número é positivo, por exemplo, quando passado para o outro membro, ele se tornará negativo. Caso o número esteja multiplicando, basta “passá-lo” dividindo e assim sucessivamente.
Veja:
2x – 8 = 3x – 10
Nessa equação, temos que “passar” o –8 para o segundo membro e o 3x para o primeiro, trocando seus sinais. Assim:
2x – 3x = –10 + 8
(–1)· – x = –2 ·(– 1)
x = 2
S = {2}.
Exemplo
Determine o conjunto solução da equação 4 (6x – 4) = 5 (4x – 1).
Resolução:
O primeiro passo é realizar a distributividade, logo:
24x – 16 = 20x – 5
Agora, organizando a equação com os valores que acompanham a incógnita de um lado e os demais no outro, vamos ter:
24x – 20x = –5 + 16
4x = 11