• Matéria: Matemática
  • Autor: contatogabriellouren
  • Perguntado 4 anos atrás

Determine o valor de cosseno em cada caso e some todos os valores de cosseno:​

Anexos:

Respostas

respondido por: auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo-a-passo:

\mathsf{sen^2\:a + cos^2\:a = 1}

\mathsf{\large(\sqrt{\dfrac{4}{5}}\large)^2 + cos^2\:a = 1}

\mathsf{\dfrac{4}{5} + cos^2\:a = 1}

\mathsf{cos^2\:a = 1  - \dfrac{4}{5}}

\mathsf{cos^2\:a = \dfrac{1}{5}}

\boxed{\boxed{\mathsf{cos\:a = \sqrt{\dfrac{1}{5}}}}}

\mathsf{\large(\sqrt{\dfrac{7}{10}}\large)^2 + cos^2\:b = 1}

\mathsf{\dfrac{7}{10} + cos^2\:b = 1}

\mathsf{cos^2\:b = 1  - \dfrac{7}{10}}

\mathsf{cos^2\:b = \dfrac{3}{10}}

\boxed{\boxed{\mathsf{cos\:b = \sqrt{\dfrac{3}{10}}}}}

\mathsf{\large(\sqrt{\dfrac{3}{4}}\large)^2 + cos^2\:c = 1}

\mathsf{\dfrac{3}{4} + cos^2\:c = 1}

\mathsf{cos^2\:c = 1  - \dfrac{3}{4}}

\mathsf{cos^2\:c = \dfrac{1}{4}}

\boxed{\boxed{\mathsf{cos\:c = \dfrac{1}{2}}}}

\mathsf{1^2 + cos^2\:d = 1}

\mathsf{cos^2\:d = 1 - 1}

\boxed{\boxed{\mathsf{cos\:d = 0}}}

\boxed{\boxed{\mathsf{cos\:a + cos\:b + cos\:c + cos\:d = \sqrt{\dfrac{1}{5}} + \sqrt{\dfrac{3}{10}} + \dfrac{1}{2} + 0}}}

respondido por: EinsteindoYahoo
1

a)

cos²(a)=1-4/5

cos(a)=1/√5=√5/5

b)

cos²(b)=1-7/10

cos(b)=√(3/10)

c)

cos²(c)=1-3/4

cos(c)=√(1/4)=1/2

d)

cos²(d)=1-1

cos(d)=0

= √5/5 + √(3/10) +1/2 + 0

Perguntas similares