• Matéria: Matemática
  • Autor: brunamarino155
  • Perguntado 4 anos atrás

derivada de sen (x)/ 1-2cos (x)​

Respostas

respondido por: brunobrahmabs3
1

Resposta: \cos(x)+2\sin(x)

respondido por: Worgin
1

f(x)=\frac{\sin(x)}{1-2\cos(x)}\\\\f'(x)=\frac{[\sin(x)]'.[1-2\cos(x)]-\sin(x).[1-2\cos(x)]'}{[1-2\cos(x)]^2}\\\\f'(x)=\frac{\cos(x).[1-2\cos(x)]-\sin(x).2\sin(x)}{[1-2\cos(x)]^2}\\\\f'(x)=\frac{\cos(x)-2\cos^2(x)-2\sin(x)^2.}{[1-2\cos(x)]^2}\\\\f'(x)=\frac{\cos(x)-2(\cos^2(x)+\sin(x)^2).}{[1-2\cos(x)]^2}\\\\f'(x)=\frac{\cos(x)-2}{[1-2\cos(x)]^2}

Perguntas similares