• Matéria: Matemática
  • Autor: rockguto
  • Perguntado 9 anos atrás

calcular sem aplicar L'HOSPITAL:  \lim_{x \to \ \pi }  \frac{tan(1+cos(x))}{cos(tang(x))-1}


Lukyo: Limite quando x tende a Pi, certo?
rockguto: sim
Lukyo: Poderia editar o enunciado!
Lukyo: ...?
Lukyo: Já estou tentando responder..
Lukyo: Consegui simplificar e chegar num limite indeterminado mais simples:

lim (1 + Cos[x])/(Tan^2 [x])
Lukyo: Esse último acho que algumas manipulações para fazer aparecer o limite fundamental dão conta..
Lukyo: Esse último limite dá zero. A resposta é zero mesmo?
Lukyo: Desculpe, na verdade o limite é -1. Já está respondido...

Respostas

respondido por: Lukyo
1
L=\displaystyle\lim\limits_{x\to \pi}\;\dfrac{\tan(1+\cos x)}{\cos(\tan x)-1}\\ \\ \\ =\lim\limits_{x\to \pi}\;\tan(1+\cos x)\cdot \dfrac{1}{\cos(\tan x)-1}\\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{\cos (1+\cos x)}\cdot \dfrac{1}{\cos(\tan x)-1}

\bullet\;\; Multiplicando e dividindo por (1+\cos x), temos

=\displaystyle\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{1}{\cos(1+\cos x)}\cdot \dfrac{1+\cos x}{\cos(\tan x)-1}

\bullet\;\; Multiplicando e dividindo por [\cos(\tan x)+1], temos

=\displaystyle\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{1}{\cos(1+\cos x)}\cdot \dfrac{(1+\cos x)\cdot [\cos(\tan x)+1]}{[\cos(\tan x)-1]\cdot [\cos(\tan x)+1]}\\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{1}{\cos(1+\cos x)}\cdot \dfrac{(1+\cos x)\cdot [\cos(\tan x)+1]}{\cos^{2}(\tan x)-1}\\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{1}{\cos(1+\cos x)}\cdot \dfrac{(1+\cos x)\cdot [\cos(\tan x)+1]}{-\sin^{2}(\tan x)}

\bullet\;\; Multiplicando e dividindo por (1-\cos x), temos

=\displaystyle\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{(1+\cos x)\cdot (1-\cos x)}{-\sin^{2}(\tan x)\cdot (1-\cos x)}\\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1-\cos^{2}x}{-\sin^{2}(\tan x)\cdot (1-\cos x)}\\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{\sin^{2}x}{-\sin^{2}(\tan x)\cdot (1-\cos x)}\\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1}{\cos x-1}\cdot \dfrac{\sin^{2}x}{\sin^{2}(\tan x)}

\bullet\;\; Multiplicando e dividindo por x^{2}, temos

=\displaystyle\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1}{\cos x-1}\cdot \dfrac{\sin^{2}x}{x^{2}}\cdot \dfrac{x^{2}}{\sin^{2}(\tan x)}\\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1}{\cos x-1}\cdot \left(\dfrac{\sin x}{x} \right )^{2}\cdot \dfrac{x^{2}}{\sin^{2}(\tan x)}


\bullet\;\; Multiplicando e dividindo por \tan^{2}x, temos

=\displaystyle\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1}{\cos x-1}\cdot \\ \\ \\ \cdot \left(\dfrac{\sin x}{x} \right )^{2}\cdot \dfrac{x^{2}}{\sin^{2}(\tan x)}\cdot \dfrac{\tan^{2}x}{\tan^{2}x}\\ \\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1}{\cos x-1}\cdot \\ \\ \\ \cdot \left(\dfrac{\sin x}{x} \right )^{2}\cdot \dfrac{\tan^{2}x}{\sin^{2}(\tan x)}\cdot \dfrac{x^{2}}{\tan^{2}x}\\ \\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1}{\cos x-1}\cdot \\ \\ \\ \cdot \left(\dfrac{\sin x}{x} \right )^{2}\cdot \dfrac{1}{\left(\frac{\sin(\tan x)}{\tan x} \right )^{2}}\cdot \dfrac{x^{2}}{\tan^{2}x}

=\displaystyle\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1}{\cos x-1}\cdot \\ \\ \\ \cdot \left(\dfrac{\sin x}{x} \right )^{2}\cdot \dfrac{1}{\left(\frac{\sin(\tan x)}{\tan x} \right )^{2}}\cdot \dfrac{\cos^{2}x}{\sin^{2}x}\cdot x^{2}\\ \\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1}{\cos x-1}\cdot \\ \\ \\ \cdot \left(\dfrac{\sin x}{x} \right )^{2}\cdot \dfrac{1}{\left(\frac{\sin(\tan x)}{\tan x} \right )^{2}}\cdot \dfrac{x^{2}}{\sin^{2}x}\cdot \cos^{2} x\\ \\ \\ \\ =\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \dfrac{1}{\cos x-1}\cdot \\ \\ \\ \cdot \dfrac{1}{\left(\frac{\sin(\tan x)}{\tan x} \right )^{2}}\cdot \cos^{2} x


Agora não tem mais nenhuma indeterminação:

L=\lim\limits_{x\to \pi}\;\dfrac{\sin(1+\cos x)}{1+\cos x}\cdot\lim\limits_{x\to \pi}\; \dfrac{\cos(\tan x)+1}{\cos(1+\cos x)}\cdot \lim\limits_{x\to \pi}\;\dfrac{1}{\cos x-1}\cdot \\ \\ \\ \cdot \lim\limits_{x\to \pi}\;\dfrac{1}{\left(\frac{\sin(\tan x)}{\tan x} \right )^{2}}\cdot \lim\limits_{x\to \pi}\;\cos^{2} x\\ \\ \\ \\ =1\cdot \dfrac{2}{1}\cdot \dfrac{1}{(-2)}\cdot 1\cdot 1\\ \\ \\ =-1


Lukyo: Veja que a ideia central aqui é multiplicar e dividir pelo termo que está dentro do seno. Mas para isso, é necessário fazer como que o seno apareça... Assim a gente usa o limite trigonométrico fundamental...
Perguntas similares