• Matéria: Matemática
  • Autor: anaclarateotonio1903
  • Perguntado 4 anos atrás

Determinar o valor de x​

Anexos:

Respostas

respondido por: edivaldocardoso
1

Resposta:

2°)

a)

 \dfrac{2x -  3}{12} =  \dfrac{8}{10}  \\  \\( 2x -3 ) \times 10 = 8 \times 12 \\  \\ 20x - 30 =9 6 \\  \\ 20x = 96 - 30 \\  \\ 20x = 36 \\  \\ x =  \frac{36 \div 4}{20 \div  4}  \\  \\  \Large \boxed{ \green{x =  \frac{9}{5} }} \\  \\  \frac{8}{10}  =  \frac{10}{y}  \\  \\ 8y = 10 \times 10 \\  \\ 8y = 100 \\  \\ y =  \frac{100 \div 4}{8 \div 4}  \\  \\ \Large \boxed{  \green{y =  \frac{25}{2} }}

b)

 \dfrac{x}{10}  =  \dfrac{8}{5}  \\  \\ 5x = 8 \times 10 \\  \\ 5x = 80 \\  \\ x =  \frac{80}{5}  \\  \\ \Large \boxed{ \green{ x = 16}} \\  \\  \dfrac{6}{y}  =  \dfrac{8}{5}  \\  \\ 8y = 6 \times 5 \\  \\ 8y = 30 \\  \\ y =  \frac{30 \div 2}{8 \div 2}  \\  \\ \Large \boxed{ \green{ y =  \frac{15}{4} }}

3°)

a)

\Large\bf Teorema \: de \: Pitágoras :  \\\Large\boxed{ \bf  {a}^{2}  =  {b}^{2}  +  {c}^{2}  } \\  \\ {25}^{2}  =  {x}^{2}  +   {18}^{2}  \\  \\ 625 =  {x}^{2}  + 324 \\  \\  625 - 324 =  {x}^{2} \\  \\  {x}^{2}  = 625 - 324 \\  \\  {x}^{2}  = 301 \\  \\ \Large \boxed{  \green{x =  \sqrt{301} }}

b)

 {25}^{2}  =  {14}^{2}  +  {b}^{2}  \\  \\ 625  = 196 +  {b}^{2}  \\  \\ 625 - 196 =  {b}^{2}  \\  \\  {b}^{2}  = 429 \\  \\ \Large \boxed{ \green{ b =  \sqrt{429}  }}

c)

 {a}^{2}  =  {12}^{2}  +  {20}^{2}  \\  \\  {a}^{2}  = 144 + 400 \\  \\  {a}^{2}  = 544 \\  \\ a =  \sqrt{544}  \\ a =  \sqrt{16 \times 34}  \\  \\ a =  \sqrt{16}  \times  \sqrt{34}  \\  \\  \Large \boxed{ \green{a = 4 \sqrt{34} }}

4°)

 \dfrac{20 \div 4}{36 \div 4}  =  \\  \\  = \Large \boxed{ \green{  \dfrac{5}{9} }} \\  \\  \Large \boxed{  \underline{\blue{ \bf \: Bons \: Estudos!}}\:11/05/2021}


anaclarateotonio1903: Muito obrigadaaaaa
edivaldocardoso: Por nada
Perguntas similares