• Matéria: Matemática
  • Autor: monteiroguedesss
  • Perguntado 4 anos atrás

Dada a equação -x² - x + 6 = 0, podemos afirmar que o conjunto de soluções dessa equação é:

Respostas

respondido por: helvandos
1

Resposta:

(-3; 2)

Explicação passo-a-passo:

▲=b^2-4ac

.....1-4*(-1)*6

....1+24

▲ = 25 rz 5

X = - b ( + - ) V ▲ / 2a

X1 = 1+5=6/-2= -3

x2 = 1-5=-4/-2=2

(-3; 2)

respondido por: JovemLendário
2

\Box \ \ \boxed{\begin{array}{l}\sf -x^2-x+6= \end{array}}\\\\\\\Box \ \ \boxed{\begin{array}{l}\sf a=-1 \end{array}}\\\Box \ \ \boxed{\begin{array}{l}\sf b=-1 \end{array}}\\\Box \ \ \boxed{\begin{array}{l}\sf c=6 \end{array}}\\\\

\Box \ \ \boxed{\begin{array}{l}\sf \Delta=(-1)^2-4.-1.6 \end{array}}\\\Box \ \ \boxed{\begin{array}{l}\sf \Delta=1+24 \end{array}}\\\Box \ \ \boxed{\begin{array}{l}\sf \Delta=5 \end{array}}\\\\

\Box \ \ \boxed{\begin{array}{l}\sf x=\frac{-b\pm\sqrt{\Delta}}{2.a}  \end{array}}\\\Box \ \ \boxed{\begin{array}{l}\sf x=\frac{1\pm5}{2.-1}  \end{array}}\\\Box \ \ \boxed{\begin{array}{l}\sf x=\frac{1\pm5}{-2}  \end{array}}\\\\

\Box \ \ \boxed{\begin{array}{l}\sf x'=\frac{1+5}{-2}  \end{array}}\boxed{\begin{array}{l}\sf x'=\frac{6}{-2}  \end{array}}\boxed{\begin{array}{l}\sf x'=-3 \end{array}}\\\\\\\Box \ \ \boxed{\begin{array}{l}\sf x''=\frac{1-5}{-2}  \end{array}}\boxed{\begin{array}{l}\sf x''=\frac{-4}{-2}  \end{array}}\boxed{\begin{array}{l}\sf x''=2 \end{array}}\\\\

Resposta correta;

S=\{2 \ , -3 \}

\ \ \ \ \heartsuit\\|\underline{\overline{\mathcal{\boldsymbol{\LaTeX}}}}|

Perguntas similares