• Matéria: Matemática
  • Autor: Tequinhaccb
  • Perguntado 4 anos atrás

A maior raiz da equação – 2x² + 3x + 5 = 0 vale:

Respostas

respondido por: davigabriel004
1

Resposta:

Explicação passo-a-passo:

Use a função do segundo grau

   =−±2−4√2

x=−b±b2−4ac2ax=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}x=2a−b±b2−4ac

   ​​

   Na forma padrão, identifique "a", "b" e "c" da equação original e adicione esses valores à função do segundo grau.

   22+3+5=0

   2x2+3x+5=02x^{2}+3x+5=02x2+3x+5=0

   =2

   a=2a={\color{#c92786}{2}}a=2

   =3

   b=3b={\color{#e8710a}{3}}b=3

   =5

   c=5c={\color{#129eaf}{5}}c=5

=−3±32−4⋅2⋅5√2⋅2

x=−3±32−4⋅2⋅52⋅2x=\frac{-{\color{#e8710a}{3}} \pm \sqrt{{\color{#e8710a}{3}}^{2}-4 \cdot {\color{#c92786}{2}} \cdot {\color{#129eaf}{5}}}}{2 \cdot {\color{#c92786}{2}}}x=2⋅2−3±32−4⋅2⋅5

​​

2

Simplifique

Determine o expoente

Resolva a multiplicação

Resolva a subtração

Resolva a multiplicação

=−3±−31√4

x=−3±−314x=\frac{-3 \pm \sqrt{-31}}{4}x=4−3±−31

​​

3

Não há soluções reais, porque o discriminante é negativo

   A raiz quadrada de um número negativo não é um número real

=−31

d=−31d = -31d=−31

Resultado

Sem solução


Brainlyanor: n deu para entender nada com sua resposta
Tequinhaccb: obrigada ❤️
Perguntas similares