• Matéria: Matemática
  • Autor: je5lucimalaine
  • Perguntado 9 anos atrás

A extremidade A de uma planta aquática encontra-se 10cm acima da superfície da água de um lago. Quando a brisa a faz balançar, essa extremidade toca a superfície da água no ponto B, situado 10√3 cm do local em que sua projeção ortogonal C, sobre a água, encontrava-se inicialmente. Considere OA, OB, e BC segmentos de retas e o arco AB uma trajetória do movimento da planta, Pode-se afirmar que a profundidade do lago no ponto O em que se encontra a raiz da planta, em centímetros, é
a) 9
b) 9√3
c) 10
d) 10√2
e) 11

Respostas

respondido por: lorydean
87
Esta questão acompanha a imagem em anexo.
Considerando que a planta seja rígida e que não se dobre quando houver brisa, temos:

OA = OB = comprimento da planta
OC = profundidade que queremos saber = x

Observe na figura um triângulo retângulo cuja hipotenusa é OB e os catetos são OC e CB:

OB² = OC² + CB²
OA² = x² + (10√3)²
(OC + CA)² = x² + 100.3
(x + 10)² = x² + 300
x² + 20x + 100 = x² + 300
20x = 200
x = 10 cm

Alternativa C.



Anexos:
Perguntas similares