• Matéria: Matemática
  • Autor: ys1926474
  • Perguntado 4 anos atrás

A função G(t) = G0 + 0,2 t, expressa os ganhos de uma empresa em função do tempo ao realizar vendas do seu produto, sendo G0 o seu ganho inicial e t o tempo em dias. Considere que o ganho no primeiro mês é de 6 mil reais. Qual será o valor em reais após 20 dias.


Alguém me ajuda??

Respostas

respondido por: numero20
1

O valor após 20 dias é de R$ 6.004,00.

O assunto abordado no enunciado é a equação do primeiro grau. Esse tipo de equação, conhecida também como função afim, é a lei de formação de retas. Com dois pontos pertencentes a uma reta, é possível determinar sua lei de formação. A lei de formação segue a seguinte fórmula geral:

y=ax+b

Onde "a" é o coeficiente angular e "b" é o coeficiente linear.

Nesse caso, temos uma função com uma parcela constante, referente ao ganho inicial, e uma parcela variável, em função do número de dias. Substituindo o ganho inicial de R$ 6.000,00 e o período de 20 dias, obtemos o seguinte:

G(20)=6.000,00+0,2\times 20=6.004,00

respondido por: Atoshiki
1

Após cálculo da função, o valor após 20 dias será R$ 6004,00.

\blacksquare Acompanhe a solução:

→ dados:

  • função: G(t) = G₀ + 0,2t
  • G₀ = ganho inicial = R$ 6000,00
  • t = tempo = 20 dias
  • G(20) = ganho em 20 dias = ?

\blacksquare Cálculo:

Substituindo o t = 20 dias na função G(t).

\large\begin {array}{l}G(t) = G_0 + 0,2t\\\\G(20)=6000+0,2\cdot20\\\\\Large\boxed{\boxed{G(20)=6004}}\Huge\checkmark\end {array}

\blacksquare Resposta:

Portanto, o valor após 20 dias será R$ 6004,00.

\blacksquare Se quiser saber mais, acesse:

  • https://brainly.com.br/tarefa/24746546
  • https://brainly.com.br/tarefa/25798751
  • https://brainly.com.br/tarefa/40423546

Bons estudos!

Anexos:
Perguntas similares