Respostas
a)
∫ dx/√(x²+9/25)
Substituindo
x= 3tan(u)/5 ==>dx=3sec²(u)/5 du
∫ 3sec²(u)/5 du/√([(3tan(u)/5)²+9/25]
∫ 3sec²(u)/5 du/√[9tan²(u)/25+9/25]
∫ 3sec²(u)/5 du/√[9sen²(u)/25+9cos²(u)]/25cos²(u)]
∫ 3sec²(u)/5 du/√[9/25cos²(u)]
∫ 3sec²(u)/5 du/[3*sec(u)/5]
∫ sec(u) du
∫ sec(u) * ( tan(u)+sec(u))/( tan(u)+sec(u)) du
Faça s=(tan(u)+sec(u) ==> ds =[sec²(u) +tan(u)*sec(u)] du
∫ sec(u) * ( tan(u)+sec(u))/s ds/[sec²(u) +tan(u)*sec(u)]
∫( tan(u)*sec(u)+sec²(u))/s ds/[sec²(u) +tan(u)*sec(u)]
∫1 /s ds
= ln |s|+ c
Como s= (tan(u)+sec(u)
= ln |(tan(u)+sec(u)|+ c
Como x= 3tan(u)/5 ==> tan(u) =5x/3 ==> u = arctan(5x/3)
= ln | (tan( arctan(5x/3) )+sec( arctan(5x/3) ) |+ c
b)
Pode ser feita da mesma maneira
Resposta:
a)
∫ dx/√(x²+9/25)
Substituindo
x= 3tan(u)/5 ==>dx=3sec²(u)/5 du
∫ 3sec²(u)/5 du/√([(3tan(u)/5)²+9/25]
∫ 3sec²(u)/5 du/√[9tan²(u)/25+9/25]
∫ 3sec²(u)/5 du/√[9sen²(u)/25+9cos²(u)]/25cos²(u)]
∫ 3sec²(u)/5 du/√[9/25cos²(u)]
∫ 3sec²(u)/5 du/[3*sec(u)/5]
∫ sec(u) du
∫ sec(u) * ( tan(u)+sec(u))/( tan(u)+sec(u)) du
Faça s=(tan(u)+sec(u) ==> ds =[sec²(u) +tan(u)*sec(u)] du
∫ sec(u) * ( tan(u)+sec(u))/s ds/[sec²(u) +tan(u)*sec(u)]
∫( tan(u)*sec(u)+sec²(u))/s ds/[sec²(u) +tan(u)*sec(u)]
∫1 /s ds
= ln |s|+ c
Como s= (tan(u)+sec(u)
= ln |(tan(u)+sec(u)|+ c
Como x= 3tan(u)/5 ==> tan(u) =5x/3 ==> u = arctan(5x/3)
= ln | (tan( arctan(5x/3) )+sec( arctan(5x/3) ) |+ c
b)
Pode ser feita da mesma maneira