• Matéria: Matemática
  • Autor: anajulia280410
  • Perguntado 4 anos atrás

Se sen x= -(12/13), com x no terceiro quadrante, determine cos x

Respostas

respondido por: elizeugatao
2

\displaystyle \text{sen x}=\frac{-1 2}{13} \ ; \ \text{cos x = ?}  \ ; \ \text x \in 3^\circ \text Q \\\\\\ \underline{\text{Rela{\c c}{\~a}o fundamental da trigonometria}}:\\\\ \text{sen}^2 \text x+\text{cos}^2\text x=1 \\\\ \text{cos}^2\text x= 1-\text{sen}^2\text x \\\\ \text{cos x}  = -\sqrt{1-\text{sen}^2\text x} \\  \text{(negativo pq cosseno no terceiro quadrante {\'e} negativo)}

\displaystyle \text{cos x}=-\sqrt{1-(-\frac{12}{13})^2} \\\\\\ \text{cos x}=-\sqrt{1-\frac{144}{169}} \\\\\\ \text{cos x}=-\sqrt{\frac{169-144}{169}}\\\\\\ \text{cos x}=-\sqrt{\frac{25}{169}} \\\\\\\ \huge\boxed{\ \text{cos x}=\frac{-5}{13}\ }\checkmark

Perguntas similares