Resolva as seguintes equações do 2° grau, identifique os coeficientes e determine a raiz se existir
Respostas
Resposta:
a) x²-5+6=0
x² +1 = 0
a=1 b= 0 c= +1
▲= b² -4.a.c
▲=(0)² -4.(1).(+1)
▲= 0 -4
▲= -4 não existe raiz real
b) x²+2x-8=0
a= 1 b= +2 c= -8
▲= b² -4.a.c
▲=(2)² -4.(1).(-8)
▲=4 +32
▲= 36
x= (-b ± √▲)/2.a
x= [-(+2) ± √36]/2.1
x= [-2 ± 6]/2
x'=[-2 +6]/2 = +4/2 = 2
x"=[-2-6]/2 = -8/2 = -4
S{2 ; -4}
c) x²-5x+8=0
a= 1 b= -5 c= +8
▲= b² -4.a.c
▲=(-5)² -4.(1).(+8)
▲=25-32
▲= -7 não existe raiz real.
d)-x²+x+12=0.(-1)
x²-x-12=0
a= 1 b= -1 c= -12
▲= b² -4.a.c
▲=(-1)² -4.(1).(-12)
▲=1 +48
▲= 49
x= (-b ± √▲)/2.a
x= [-(-1) ± √49]/2.1
x= [+1 ±7]/2
x'=[+1 +7]/2 = +8/2 = 4
x"=[1-7]/2 = -6/2 = -3
S{4 ; -3}
e)-x²+6x-5=0.(-1)
x²-6x+5=0
a= 1 b= -6 c= +5
▲= b² -4.a.c
▲=(-6)² -4.(1).(+5)
▲=36 -20
▲= 16
x= (-b ± √▲)/2.a
x= [-(-6) ± √16]/2.1
x= [+6 ±4]/2
x'=[+6+4]/2 = +10/2 = 5
x"=[6-4]/2 =2/2 = 1
S{5 ; 1}
f)6x²+x-1=0
a= 6 b= +1 c= -1
▲= b² -4.a.c
▲=(1)² -4.(6).(-1)
▲=1 +24
▲= 25
x= (-b ± √▲)/2.a
x= [-(+1) ± √25]/2.6
x= [-1 ±5]/12
x'=[-1 +5]/12 = 4/12 simplifica 4 e 12 por 4 = 1/3
x"=[-1 -5 ]/2 = - 6/12 simplifica -6 e 12 por 6 = -1/2
S{1/3; -1/2}
h) 2x²-7x+2=0
a= 2 b= -7 c= +2
▲= b² -4.a.c
▲=(-7)² -4.(2).(+2)
▲=49 - 16
▲= 33
x= (-b ± √▲)/2.a
x= [-(-7) ± √33]/2.2
x= [+7± √33 ]/4
x'=[7+ √33]/4
x"=[7-√33]/4
S[7+ √33]/4 ; [7- √33]/4
i) 4x²+9=12x
4x²-12x +9=0
a= 4 b= -12 c= +9
▲= b² -4.a.c
▲=(-12)² -4.(4).(+9)
▲=144 - 144
▲= 0
x= (-b ± √▲)/2.a
x= [-(-12) ± √0]/2.4
x= [+12± 0 ]/8
x'=[12+ 0]/8 = 12/8 simplificando 12 e 8 por 4= 3/2
x"=[12-0]/8 = 12/8 = 3/2
S{3/2}
j) 2x²= -12x-18
2x²+12x+18 =0
a= 2 b= +12 c= +18
▲= b² -4.a.c
▲=(12)² -4.(2).(+18)
▲=144 - 144
▲=0
x= (-b ± √▲)/2.a
x= [-(+12) ± √0]/2.2
x= [-12± √0 ]/4
x'=[-12+ 0]/4 = -12/4 = -3
x"=[-12-0]/4 = -12/4 = -3
S{-3}