• Matéria: Matemática
  • Autor: dihomemaranha
  • Perguntado 4 anos atrás

Resolva em R, a equação ℓog (x – 3) (3x + 1) = 1​

Respostas

respondido por: auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo-a-passo:

\mathsf{log\:(x - 3).(3x + 1) = 1}

\mathsf{log\:(x - 3).(3x + 1) = log\:10}

\mathsf{(x - 3).(3x + 1) = 10}

\mathsf{3x^2 + x - 9x - 3 - 10 = 0}

\mathsf{3x^2 - 8x - 13 = 0}

\mathsf{\Delta = b^2 - 4.a.c}

\mathsf{\Delta = (-8)^2 - 4.(3).(-13)}

\mathsf{\Delta = 64 + 156}

\mathsf{\Delta = 220}

\mathsf{x = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{8 \pm \sqrt{220}}{6} \rightarrow \begin{cases}\mathsf{x' = \dfrac{8 + 2\sqrt{55}}{6} = \dfrac{4 + \sqrt{55}}{3}}\\\\\mathsf{x'' = \dfrac{8 - 2\sqrt{55}}{6} = \dfrac{4 - \sqrt{55}}{3}}\end{cases}}

\boxed{\boxed{\mathsf{S = \{\:\dfrac{4 + \sqrt{55}}{3}\:;\:\dfrac{4 - \sqrt{55}}{3}\:\}}}}

Perguntas similares