• Matéria: Matemática
  • Autor: vitor07
  • Perguntado 9 anos atrás

qual a matriz inversa de  3   1

                                             2  -1

Respostas

respondido por: conrad
3

Olá vitor!! a solução está em anexo!! veja se entende!!!

Anexos:
respondido por: Diogolac
3

Pela Regra de Cramer, observe que está separado entre || e!! as duas colunas onde vc vai operar para encontrar as incógnitas a,b,c,d.

<var>\ \ \ \ \ \ A\ \ \ \ \ \ \ .A^-^1\ \ \ \ \ \ \ =\ \ \ \ \ I\\\left[\begin{array}{ccc}3&amp;\ 1\\2&amp;-1\end{array}\right].\left[\begin{array}{ccc}a&amp;c\\b&amp;d\end{array}\right]=\left[\begin{array}{ccc}|1|&amp;!0!\\|0|&amp;!1!\end{array}\right]\\\\A^-^1a:\left[\begin{array}{ccc}|1|&amp;1\\|0|&amp;-1\end{array}\right]=&gt;det(A^-^1a)=-1\\\\A^-^1b:\left[\begin{array}{ccc}3&amp;|1|\\2&amp;|0|\end{array}\right]=&gt;det(A^-^1b)=-2\\\\A^-^1c:\left[\begin{array}{ccc}!0!&amp;1\\!1!&amp;-1\end{array}\right]=&gt;det(A^-^1c)=-1\\\\</var>

<var>A^-^1d:\left[\begin{array}{ccc}3&amp;!0!\\2&amp;!1!\end{array}\right]=&gt;det(A^-^1d)=3\\\\ A:\left[\begin{array}{ccc}3&amp;1\\2&amp;-1\end{array}\right]=&gt;det(A)=-5\\\\</var>

<var>A^-^1d:\left[\begin{array}{ccc}3&amp;!0!\\2&amp;!1!\end{array}\right]=&gt;det(A^-^1d)=3\\\\ A:\left[\begin{array}{ccc}3&amp;1\\2&amp;-1\end{array}\right]=&gt;det(A)=-5\\\\A^-^1:\left[\begin{array}{ccc}\frac{det(A^-^1a)}{det(A)}&amp;\frac{det(A^-^1c)}{det(A)}\\\frac{det(A^-^1b)}{Det(A)}&amp;\frac{det(A^-^1d)}{det(A)}\end{array}\right]=\left[\begin{array}{ccc}\frac{-1}{-5}&amp;\frac{-1}{-5}\\\frac{-2}{-5}&amp;\frac{3}{-5}\end{array}\right]=&gt;\left[\begin{array}{ccc}\frac{1}{5}&amp;\frac{1}{5}\\\frac{2}{5}&amp;\frac{-3}{5}\end{array}\right] </var>

Perguntas similares