um jardim em forma retangular tem 96m² de area. Se aumentarmos o comprimento desse jardim em 3m e a largura em 2m, a area do jardim passa a ter 150m². calcule as dimensões originais do jardim.
Respostas
1º) JARDIM original
comprimento = x
Largura = y
AREA = 96m²
2º) AUMENTO O JARDIM
comprimento = x + 3m
Largura = y + 2m
AREA = 150m²
{ x.y = 96
{(x + 3)(y + 2) = 150
x.y = 96 ( isolar o (x))
x = 96/y ( SUBSTITUIR (X))
desenvolvimeto NA FOLHA em FOTO
DESENHO em FOTO e as MEDIDAS
3y² - 48y + 192 = 0
a = 3
b = - 48
c = 192
Δ = b² - 4ac
Δ = (-48)² - 4(3)(192)
Δ = 2304-2304
Δ = 0
se
Δ = 0 ( unica RAIZ)
então
y = - b/2a
y = - (-48)/2(3)
y = + 48/6
y = 8 ( achar o valor de (x))
96
x = ------
y
96
x = ------
8
x = 12
assim
as DIMENSÕES originais do JARDIM
comprimento = x
comprimento = 12 metros
Largura = y
Largura = 8 metros
Para encontrarmos a área de um retângulo , usamos a seguinte fórmula:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A = C.L ( C = Comprimento e L = Largura )
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A questão nos fala que a área inicial é 96cm² e que a área com o aumento é de 150 cm² , com isso montaremos nossa equação linear.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
C.L=96
(C+3).(L+2)=150
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
C=96/L
CL+2C+3L+6 = 150
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Como (CL) = 96 , vamos substituir na fórmula:
96+2C+3L+6=150
2C+3L = 150-96-6
2C+3L = 48
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Substituindo o valor do C nesta fórmula temos:
2(96/L) +3L = 48
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
MMC = L
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
2.96+3L² = 48L
192+3L²=48L
3L²-48L+192=0
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Temos uma equação quadrática:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
a = 3
b = - 48
c= 192
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Fórmula:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
S { 8 }
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Substituindo o valor do L na equação do cumprimento temos :
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
96/L = C
96/8 = C
12 = C
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Como o comprimento é 12 , vamos substituir na fórmula da área para achar a largura.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
C.L=96
12.L = 96
L = 96/12
L = 8
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Logo as dimensões originais são 8 de largura e 12 de comprimento.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃