O trinômio f(x)=x²-px+q tem por raízes a e b, ab≠0.Qual trinômio cujas raízes são 1/a e 1/b?
Resposta: x^2 - px/q + 1/q
Respostas
respondido por:
11
x1 = a
x2 = b
a+b = -(-p)/1
a+b = p
a.b = c/a
ab = q/1
ab = q
x1 = 1/a
x2 = 1/b
-b/a = (1/a+1/b) --> (a+b)/ab = p/q --> -b/1 = p/q --> -b = p/q
x1.x2 = c/a --> (1/a.1/b) = 1/ab = 1/q
c/a = 1/q --> c/1 = 1/q --> c = 1/q
f(x) = x² + bx + c
f(x) = x² -px/q + 1/q
x2 = b
a+b = -(-p)/1
a+b = p
a.b = c/a
ab = q/1
ab = q
x1 = 1/a
x2 = 1/b
-b/a = (1/a+1/b) --> (a+b)/ab = p/q --> -b/1 = p/q --> -b = p/q
x1.x2 = c/a --> (1/a.1/b) = 1/ab = 1/q
c/a = 1/q --> c/1 = 1/q --> c = 1/q
f(x) = x² + bx + c
f(x) = x² -px/q + 1/q
Perguntas similares
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás