• Matéria: Matemática
  • Autor: henriquegamer134
  • Perguntado 4 anos atrás

1-Observe a sequência dos números Triangulares, podemos afirmar que os dois números triangulares seguintes são


(A) (28 e 40)

(B) 28 e 36)

(C) (30 e 36)

(E)(24 e 32)

Dado os números de uma sequências de uma P.G infinita( 0,7; 0,07 ; 0,007 ; 0,0007 ;...) a soma desse termo é

(A) 9/7

(B)7/9

(c)11/9

(E)10/9

Anexos:

Respostas

respondido por: Anônimo
0

1) Na sequência os números triangulares são: 28 e 36, alternativa (B).

2) A soma desses termos da PG infinita é 7/9,  alternativa (B).

1) Os números triangulares podem ser calculados pela expressão:

T_n = \dfrac{n\cdot (n+1) }{2}

E o primeiro número triangular \bf{T_1= 1} e na sequência teremos que calcular o e o 8º número triangular.

Calculando n = 7 e n=8

T_7= \dfrac{7\cdot (7+1)}{2} \\\\T_7=\dfrac{7\cdot 8}{2} \\\\T_7 = \dfrac{56}{2} \\\\\boxed{T_7 = 28}

T_8= \dfrac{8\cdot (8+1)}{2} \\\\T_8=\dfrac{8\cdot 9}{2} \\\\T_8 = \dfrac{72}{2} \\\\\boxed{T_8 = 36}

2) Para calcular a soma dos termos de uma PG infinita utilizamos a relação:

S= \dfrac{a_1}{1-q}

Para calcular a razão (q)  dividimos o segundo termo pelo primeiro.

q= \dfrac{a_2}{a_1} \\\\q= \dfrac{0,07}{0,7} \\\\\boxed{q=0,1}

A soma é?

S= \dfrac{0,7}{1-0,1} \\\\S= \dfrac{0,7}{0,9} \\\\\boxed{S=\frac{7}{9} }

Continue estudando:

brainly.com.br/tarefa/38504629

brainly.com.br/tarefa/363859

Anexos:
Perguntas similares