Analise o diagrama abaixo e responda
1) Qual o domínio da função?
A // B // {6, 7, 8, 9} // {4,5}
2) Qual o contradomínio da função?
A // B // {6, 7, 8, 9} // {4, 5}
3) Qual o conjunto imagem da função?
A // B // {6, 7, 8, 9} // {4, 5}
4) Qual o valor de x para f(x)=6?
x=5 // x=6 // x=7 // x=8
Respostas
O domínio, o contradomínio e a imagem de uma função são conjuntos importantes para definirmos o que é função e compreendermos melhor o seu comportamento. Uma função é uma relação entre dois conjuntos domínio e contradomínio em que, para cada elemento do domínio, existirá um único correspondente no contradomínio, esse correspondente é conhecido como imagem.
Por exemplo, se a função pega elementos do domínio e relaciona-os com o dobro deles no contradomínio, 2 estará relacionado com 4, logo, a imagem da função para 2 é igual a 4. Ao juntarmos todas as imagens, formamos o conjunto das imagens, que são todos os elementos do contradomínio correspondentes a algum elemento do domínio.
Leia também: Plano cartesiano – plano em que as funções são representadas graficamente
Função
Para entender o que são domínio, contradomínio e imagem, precisamos definir o que é função.
Conhecemos como função uma relação entre dois conjuntos A e B, em que, para todo elemento do conjunto A, existe um único correspondente no conjunto B. Perceba que na função os valores do conjunto A, conhecido como domínio, são relacionados aos seus correspondentes no conjunto B, conhecido como contradomínio, dependendo do comportamento dessa função, o que conhecemos como lei de formação.
Exemplos:
Trata-se de uma função, pois satisfaz a definição, todo elemento de A possui um único correspondente em B.
Não se trata de uma função, pois há elementos no domínio que não possuem correspondente em B, o que contradiz a definição.
Também não é uma função, pois há elementos do conjunto A que possuem dois correspondentes no conjunto B, o que contradiz a definição.
É função, pois as restrições são para o domínio, ou seja, o conjunto A não tem problema algum caso sobre elementos no contradomínio ou caso exista um elemento de B correspondente a dois elementos distintos em A.
Não pare agora... Tem mais depois da publicidade ;)
Domínio da função
Dada uma função qualquer, o domínio é formado pelos valores que o x pode assumir. Na maioria das vezes, trabalhamos a função que vai de R em R, ou seja, o domínio é o conjunto dos números reais e o contradomínio também, entretanto, pode ser que haja algumas restrições para o domínio.
Exemplo 1:
Vamos começar com um exemplo mais simples, essa função f(x) = 2x f: A → B, A = {1, 2, 3, 4, 5} e B ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Nesse caso o domínio da função D(f): {1, 2, 3, 4, 5}.
Agora, analisando a lei de formação e pensando em uma função R → R, eliminaremos as possíveis restrições do domínio, por exemplo, se a função possuir a lei de formação:
Note que o x não pode ser igual a 0, já que isso causaria uma indeterminação, pois não é possível dividir 1 por 0. Nesse caso o domínio da minha função não pode ser 0, então o D(f) = R* (conjunto dos números reais não nulos).
Outro exemplo bastante comum são funções com radical. Quando trabalhamos com raiz quadrada, os valores que estão dentro da raiz não podem ser negativos, pois estamos trabalhando com números reais, e, no conjunto dos números reais, não existe raiz quadrada para números negativos, o que justifica a criação posteriormente do conjunto dos números complexos. Vamos analisar um exemplo de função com radical e determinar seu domínio.
Exemplo 2:
Note que, nesse caso, x – 10 precisa ser maior ou igual a zero já que não existe raiz quadrada de números negativos no conjunto dos números reais:
Veja também: Determinando o domínio de uma função
Contradomínio
Como vimos, o contradomínio de uma função f: A → B é o conjunto B. O contradomínio que mais trabalhamos é o conjunto dos números reais. É importante lembrarmo-nos de que no domínio todo elemento tem que ter necessariamente um correspondente no contradomínio, porém não há uma restrição para o contradomínio, logo, o conjunto pode ter elementos que não sejam correspondentes de ninguém no domínio, um exemplo seria a função f(x) = x² com f: R → R.
Note que por mais que nessa função a imagem nunca seja negativa, ou seja, para todo valor de x, x² é sempre um número positivo, ainda sim o contradomínio pode ser os números reais. Ter um resultado sempre positivo faz com que a imagem seja sempre um número positivo, o que não altera o contradomínio.