• Matéria: Matemática
  • Autor: lih249
  • Perguntado 4 anos atrás

12) (M121073H6) Observe as cinco equações apresentadas abaixo,
I: 3x + 2y - 5 = 0
II: y - x2 + 2x = 6
III: (x - 2)2 - (y + 3)2 = 3
IV: (x - 5)2 + (y + 2)2 = 9
V: 4x2 +9y2 = 36
Qual dessas equações descreve uma circunferência no plano cartesiano?
A).
B) II.
C) III.
D) IV.
E) V.​


rafascanor: UM CANAL DE MÚSICAS RELAXANTES PARA VCS ESTUDANTES https://www.youtube.com/channel/UCXqU-JDgCQGpACUW6fho6_g

Respostas

respondido por: transformicepra
228

Resposta:

IV: (x-5)^{2} + (y+2)^{2} = 9

Explicação passo-a-passo:

A equação reduzida da reta pode ser encontrada por:

Deixe um coraçãozinho se ajudou.

A33 = D

Anexos:

adert123: e C ou D?
ketlyguimaraes362: também quero saber
ellenlorane882: Também quero saber ...qual das duas ?
Raianecristielly: e a C ou a D?
juliamoraisjm2002: mano é C ou D ?
docin09: eu vou de letra c)
atilanogueira: É a letra D pessial
respondido por: gustavoif
93

Das equações apresentadas, a que descreve uma circunferência no plano cartesiano é a equação presente em D) IV.

Vejamos como resolver esse exercício. Estamos diante de um problema de equação da circunferência.

Será necessário comparar as equações que temos com a equação da circunferência, que é (x - a)² + (y - b)² = r², onde o centro está em (a,b) e o raio é r.

Vamos aos dados iniciais:

  • Observe as cinco equações apresentadas abaixo. Qual dessas equações descreve uma circunferência no plano cartesiano?

Resolução:

I: 3x + 2y - 5 = 0 - É uma equação de reta.

II: y - x² + 2x = 6 - É também uma equação de parábola.

III: (x - 2)² - (y + 3)² = 3 - Não é equação da circunferência, pois tem um sinal de menos entre os termos entre parênteses.

IV: (x - 5)² + (y + 2)² = 9 - É uma equação de uma circunferência com centro C no ponto (5,-2) e raio igual a 3.

V: 4x² +9y² = 36 - Equação da elipse.

Veja mais sobre matemática em:

https://brainly.com.br/tarefa/23284956

Anexos:

rafascanor: UM CANAL DE MÚSICAS RELAXANTES PARA VCS ESTUDANTES https://www.youtube.com/channel/UCXqU-JDgCQGpACUW6fho6_g
Perguntas similares