• Matéria: Matemática
  • Autor: ItaloRego6799
  • Perguntado 4 anos atrás

A equação x^4 – 6x² + c = 0 admite quatro raízes reais distintas para quais valores?
A) –1< c < 9.
B) –9 < c < 9.
C) –3 < c < 3.
D) 0 < c < 3.
E) 0 < c < 9.

Respostas

respondido por: elizeugatao
0

\text x^4-6\text x^2+\text c=0\\\\ \text x^4-6\text x^2+9+\text  c =9 \\\\ (\text x^2-3)^2=9-\text c \\\\ \text x^2-3=\pm\sqrt{9-\text c} \\\\ \underline{\text{Primeira restri{\c c}{\~a}o }}: \\\\ 9-\text c &gt; 0 \to \boxed{\text c &lt; 9} \\\\ \underline{\text{Continuando}}: \\\\ \text x^2 = 3\pm\sqrt{9-\text c} \\\\ \text x=\pm\sqrt{3\pm\sqrt{9-\text c}} \\\\ \text{Pegando uma das ra{\'i}zes para analisar}: \\\\\ \sqrt{3-\sqrt{9-\text c}} &gt;0\\\\ 3-\sqrt{9-\text c}&gt;0 \\\\ \sqrt{9-\text c}&lt;3 \\\\ 9-\text c&lt;9

-\text c&lt;0 \to \boxed{\text c&gt;0}

Portanto :

\huge\boxed{\ 0&lt;\text c&lt;9\ }\checkmark

Letra E

Perguntas similares