1) Abaixo teremos as notas de Matemática da turma 3003. Calcule a
média, moda e mediana :
Aluno 1; nota 80
Aluno 2; nota 70
Aluno 3; nota 80
Aluno 4; nota 80
Aluno 5; nota 100
Aluno 6; nota 60
Aluno 7; nota 90
Aluno 8; nota 80
Aluno 9; nota 50
Aluno 10; nota 70
pfvvvvv!!!
Respostas
Resposta:
Se o conjunto de informações for numérico e estiver organizado em ordem crescente ou decrescente, a sua mediana será o número que ocupa a posição central da lista. Considere que a escola de música já citada possui nove professores e que suas idades são:
32 anos, 33 anos, 24 anos, 31 anos, 44 anos, 65 anos, 32 anos, 21 anos e 32 anos
Para encontrar a mediana das idades dos professores, devemos organizar a lista de idades em ordem crescente:
21, 24, 31, 32, 32, 32, 33, 44 e 65
Observe que o número 32 é o quinto. À sua direita, existem outras 4 idades, assim como à esquerda. Logo, 32 é a mediana da lista das idades dos professores.
21, 24, 31, 32, 32, 32, 33, 44, 65
Se a lista possuir um número par de informações, para encontrar a mediana (Ma), devemos encontrar os dois valores centrais (a1 e a2) da lista, somá-los e dividir o resultado por 2.
Ma = a1 + a2
2
Se as idades dos professores fossem 19 anos, 19 anos, 18 anos, 22 anos, 44 anos, 45 anos, 46 anos, 46 anos, 47 anos e 48 anos, a lista crescente com as duas medidas centrais seria:
18, 19, 19, 22, 44, 45, 46, 46, 47, 48
Observe que a quantidade de informações à direta e à esquerda desses dois números é exatamente a mesma. A mediana desse conjunto de dados é, portanto:
Ma = a1 + a2
2
Ma = 44 + 45
2
Ma = 89
2
Ma = 44,5 anos
Média
Média (M), mais precisamente chamada de média aritmética simples, é o resultado da soma de todas as informações de um conjunto de dados dividida pelo número de informações que foram somadas. A média aritmética simples entre 14, 15 e 25, por exemplo, é a seguinte:
M = 14 + 15 + 25
3
Como há três dados na lista, dividimos a soma desses dados pelo número 3. O resultado é:
M = 54
3
M = 18
A média é a medida de centralidade mais usada por ser a que mescla de maneira mais uniforme os valores mais baixos e os mais altos de uma lista. No conjunto anterior, por exemplo, a mediana é igual a 44,5, mesmo com tantas idades próximas de 20 anos. Observe a média aritmética simples desse mesmo conjunto:
M = 18 + 19 + 19 + 22 + 44 + 45 + 46 + 46 + 47 + 48
10
M = 35,4 anos