Leia o texto a seguir:
“O pré-processamento, também conhecido como preparação da base de dados, manipula e transforma os dados brutos de maneira que o conhecimento neles contido possa ser mais fácil e corretamente obtido. A melhor maneira de se pré-processar os dados depende de três fatores centrais: os problemas existentes na base, quais respostas pretende-se obter e como funcionam as técnicas de mineração.”
Fonte: CASTRO, L. N.; FERRARI, D. G. Introdução à mineração de dados:
conceitos básicos, algoritmos e aplicações. São Paulo: Saraiva, 2016. p. 34.
Qual alternativa descreve corretamente as principais tarefas de pré-processamento?
Grupo de escolhas da pergunta
A limpeza cuida da padronização do formato dos dados. A integração cuida da diminuição da base de dados. A redução cuida da união de múltiplas fontes de dados. A transformação cuida de permitir que métodos que trabalham apenas com atributos nominais possam ser empregados. A discretização cuida da atribuição de valores ausentes, da remoção de ruídos e de corrigir inconsistências.
A limpeza cuida de permitir que métodos que trabalham apenas com atributos nominais possam ser empregados. A integração cuida da diminuição da base de dados. A redução cuida da união de múltiplas fontes de dados. A transformação cuida da padronização do formato dos dados. A discretização cuida da atribuição de valores ausentes, da remoção de ruídos e de corrigir inconsistências.
A limpeza cuida da diminuição da base de dados. A integração cuida da padronização do formato dos dados. A redução cuida da união de múltiplas fontes de dados. A transformação cuida de permitir que métodos que trabalham apenas com atributos nominais possam ser empregados. A discretização cuida da atribuição de valores ausentes, da remoção de ruídos e de corrigir inconsistências.
A limpeza cuida de permitir que métodos que trabalham apenas com atributos nominais possam ser empregados. A integração cuida da união de múltiplas fontes de dados. A redução cuida da diminuição da base de dados. A transformação cuida da padronização do formato dos dados. A discretização cuida da atribuição de valores ausentes, da remoção de ruídos e de corrigir inconsistências.
A limpeza cuida da atribuição de valores ausentes, da remoção de ruídos e de corrigir inconsistências. A integração cuida da união de múltiplas fontes de dados. A redução cuida da diminuição da base de dados. A transformação cuida da padronização do formato dos dados. A discretização cuida de permitir que métodos que trabalham apenas com atributos nominais possam ser empregados.
Respostas
respondido por:
4
Resposta:
c
Explicação:
respondido por:
0
Resposta:
A
Explicação:
Desculpa a demora mas bons estudos Beijo até a próxima ❤
Perguntas similares
3 anos atrás
3 anos atrás
3 anos atrás
6 anos atrás
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás