• Matéria: Matemática
  • Autor: iagomanuel
  • Perguntado 4 anos atrás

10. O teorema de Pitágoras é uma das relações métricas do
triângulo retângulo, isto é, é uma igualdade capaz de
relacionar as medidas dos três lados de um triângulo nessas
condições. É possível descobrir, por meio desse teorema, a
medida de um dos lados de um triângulo retângulo
conhecendo as outras duas medidas. Com bases nessa
breve viagem na história encontre a hipotenusa de um
triângulo retângulo em que a altura relativa à hipotenusa
mede 6 cm e determina na hipotenusa dois segmentos cuja
diferença é de 5 cm. POR FAVOR RESPONDA É URGENTEEE​

Respostas

respondido por: SocratesA
1

A hipotenusa do triângulo mede 13cm.

Por meio da relação métrica h² = m.n pode-se determinar o valor da hipotenusa.

h = 6cm

m = projeção sobre a hipotenusa

n = projeção sobre a hipotenusa.

m - n = 5 (Diferença entre as projeções)

m = 5 + n

6² = (5 + n).n

36 = n² + 5n

n² + 5n - 36 = 0

Δ = b² - 4.a.c

Δ = 5² - 4.1.(-36)

Δ = 25 + 144

Δ = 169

n = (-b ± √Δ)/2.a

n = (-5 ± √169)/2

n = (-5 ± 13)/2

n' = (-5 + 13) / 2

n' = 8 / 2

n' = 4cm

n" = (-5- 13) / 2

n" = -18/2

n" = -9cm →Não convem, pois não existe medfida negativa.

Calculando m:

m - n = 5

m - 4 = 5

m = 5 + 4

m = 9cm

Calculando a hipotenusa:

Hip = m + n

Hip = 9 + 4

Hip = 13cm

Veja mais em:

https://brainly.com.br/tarefa/9497886

https://brainly.com.br/tarefa/44300776

Anexos:
Perguntas similares