Que polinômio P(x) se deve subtrair a (x + 2)³ para se obter (x – 2)³ ?
Respostas
Resposta:
Explicação passo a passo:
P(x) = 12x^2 + 16
Que polinômio P(x) se deve subtrair a (x + 2)³ para se obter (x – 2)³ ?
Trata-se de produtos notáveis: cubo de um binômio
Respondem a
(a ± b)^3 = a^3 ± 3a^2b + 3ab^2 ± b^3
Desenvolvendo as expressões apresentadas
(x + 2)^3 = x^3 + 6x^2 + 12x + 8
(x - 2)^3 = x^3 - 6x^2 + 12x - 8
Traducindo enunciado
(x + 2)^3 - P(x) = (x - 2)^3
Com as expressões obtidas do desenvolvimento
x^3 + 6x^2 + 12x + 8 - P(x) = x^3 - 6x^2 + 12x - 8
Reduzindo termos semelhantes
( x^3 + 6x^2 + 12x + 8) - (x^3 - 6x^2 + 12x - 8) = P(x)
Retirando parêntese
x^3 + 6x^2 + 12x + 8 - x^3 + 6x^2 - 12x + 8 = P(x)
Efetuando, resposta
b) P(x) = x³ + 24x²
c) P(x) = - 2x³ - 24x
d) P(x) = - x³ - 24x
e) P(x) 2x²+ 24x